
Polynomial Time Algorithms in Invariant Theory 
for Torus Actions

M. Levent Doğan 
21.04.2022 

 
 

Based on a joint work with P. Bürgisser, V. Makam, M. Walter, A. Wigderson



Permanent vs Determinant

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann



Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)



Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc



Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

• , 
whenever  are diagonal matrices.
per(LAR) = per(L)per(A)per(R)

L, R

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc

• , 
for every 
det(LAR) = det(L) det(A) det(R)

L, R ∈ ℂn×n



Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

• , 
whenever  are diagonal matrices.
per(LAR) = per(L)per(A)per(R)

L, R

• Matrix scaling

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc

• , 
for every 
det(LAR) = det(L) det(A) det(R)

L, R ∈ ℂn×n

• Gaussian elimination



Adj(G)G

Biadjacency matrix per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
           3

per(Adj(G)) =
=

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
           3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
           3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

•Theorem (Valiant ‘79) : The complexity of computing the permanent of an  matrix is 
#P-complete.

n × n (0,1)−

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)



Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
           3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

•Theorem (Valiant ‘79) : The complexity of computing the permanent of an  matrix is 
#P-complete.

n × n (0,1)−

•Even though the decision problem is in P ! 

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)





•
   

      

     :  vector of row sums 

     :  vector of column sums

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)



•
   

      

     :  vector of row sums 

     :  vector of column sums

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
If  is a positive, doubly stochastic matrix, then  

                             

A ∈ ℝn×n

per(A) ≥
n!
nn

 

 
 

1
n

Jn =

1/n 1/n … 1/n
1/n ⋱ ⋮
⋮ ⋱ ⋮

1/n … … 1/n

r = 1
c = 1



•
   

      

     :  vector of row sums 

     :  vector of column sums

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
If  is a positive, doubly stochastic matrix, then  

                             

A ∈ ℝn×n

per(A) ≥
n!
nn

•Assume  is a positive matrix,  are positive diagonal matrices. 
  is a matrix. 

A ∈ ℝn×n (r, c)− L, R
⇒ LAR (Lr(AR), Rc(LA))−



•
   

      

     :  vector of row sums 

     :  vector of column sums

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
If  is a positive, doubly stochastic matrix, then  

                             

A ∈ ℝn×n

per(A) ≥
n!
nn

•Assume  is a positive matrix,  are positive diagonal matrices. 
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Max-flow-min-cut 
formulationSinkhorn-Knopp 

algorithm 

[Linial,Samorodnitsky, Wigderson ’04] : The first 
deterministic polynomial time approximation algorithm 

for the permanent.
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(t1, t2, …, td) ⋅ (v1, v2, …, vn) = (tω1 v1, tω2 v2, …, tωn vn)

• Each coordinate  is scaled according to the weight .vi ωi

• Definition: The weight matrix of  is the integer 
matrix  having  as its i-th column.

(ℂ×)d ↷ ℂn

M ∈ ℤd×n ωi

M = [1 1]

M = [1 −1]

M = [1 0
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Note: In the case of matrix scaling, 
Nullcone membership ~ is the matrix scalable? 
Orbit closure containment problem ~ is the matrix almost scalable? 
Minimizing   ~  scaling. ∇Fv (r, c)−
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• Ongoing research for non-commutative groups: [Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson ’19]
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Orbit closure containment : NP-hard / as hard as tensor rank     [Bläser, Ikenmeyer, Lysikov, Pandey, Schreyer ’21]

•Orbit closure intersection problem admits polynomial time algorithm for: 
Left-right action,  [Derksen,Makam ’18], [Allen-Zhu, Garg, Li, Oliveira, Wigderson ’18], 	 [Ivanyos, Qiao, Subrahmanyam ’18] 
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Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,  
such that  is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

•Kannan & Bachem (’79): The diagonal matrix and the multiplier matrices  can be 
computed in polynomial time. 

U, W

•  gives an isomorphism between the lattices 
.

W
{α ∈ ℤn ∣ (UMW)α = 0} → {α ∈ ℤn ∣ Mα = 0}

•As  is diagonal, a basis for the latter lattice is given by the columns  of 
, where  is the rank of .
UMW W(r+1), …, W(n)

W r M
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•Input:  with bit-lengths bounded by   
Decide .

α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

•  Hence it is not efficient to actually compute .log xα(v) = O(b2b) . xα(v)

•Factor refinement: Pick two entries, one from left and one from right. Quotient out the gcd. 
 vα1

1 vα2
2 …vαn

n
?= wα1

1 wα2
2 …wαn

n → d = gcd(vi, wj)
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1 …(vi/d)αi…vαn
n
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1 …(wj /d)αj…wαn

n

•Theorem (Ge ’93): Laurent monomial equivalence over a number field K can be tested in 
polynomial time.
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L(v) C(v)
TvL(v) = Tv .

vL(v)

(vL(v))i = {vi  if  − ωi ∈ C(v)
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•Corollary: There is a poly-time reduction from orbit closure 
intersection problem to orbit equality problem.
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Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

• Using linear programming, construct .vL(v), wL(w)

• Use the algorithm for orbit equality to test  

                                             TvL(v) = TwL(w) .

• If equal, then the orbit closures intersect. If not, the intersection is 
empty.



Thanks!


