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A ∈ ℝn×n

per(A) ≥
n!
nn

•Assume  is a positive matrix,  are positive diagonal matrices. 


A ∈ ℝn×n (r, c)− L, R
⇒ LAR (Lr(AR), Rc(LA))−

•Idea: If there exist  with  doubly stochastic then  L, R LAR

per(A) =
per(LAR)

per(L)per(R)
≥

n!
per(L)per(R)nn
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Max-flow-min-cut 
formulationSinkhorn-Knopp 

algorithm 

[Linial,Samorodnitsky, Wigderson ’04] : The first 
deterministic polynomial time approximation algorithm 

for the permanent.
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•  : dimensional algebraic torus 


T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

• Suppose : ω1, ω2, …, ωn ∈ ℤd

(t1, t2, …, td) ⋅ (v1, v2, …, vn) = (tω1 v1, tω2 v2, …, tωn vn)

• Each coordinate  is scaled according to the weight .vi ωi

• Definition: The weight matrix of  is the integer 
matrix  having  as its i-th column.

(ℂ×)d ↷ ℂn

M ∈ ℤd×n ωi

M = [1 1]

M = [1 −1]

M = [1 0
0 1]
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Note: In the case of matrix scaling, 
Nullcone membership ~ is the matrix scalable? 
Orbit closure containment problem ~ is the matrix almost scalable? 
Minimizing   ~  scaling. ∇Fv (r, c)−
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• Both the primal and the dual problem can be solved by the means of convex optimization (ellipsoid method / interior-
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[Gurvits ’04], [Kortanek, Xu, Ye ’97], [Andersen, Ye ’98], [Singh, Vishnoi ’14], [Straszak,Vishnoi ’19], [Bürgisser, Li, Nieuwboer, Walter ’20]
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• Ongoing research for non-commutative groups: [Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson ’19]
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M ∈ ℤd×n (ℂ×)d ↷ ℂn v, w ∈ ℚ(i)n . b
v, w and M . (d, n, b)

•For non-commutative group actions: 
Orbit equality : as hard as graph isomorphism problem 
Orbit closure intersection : conjectured to be in P.     Geometric complexity theory program [Mulmuley, Sohoni ‘01] 

Orbit closure containment : NP-hard / as hard as tensor rank     [Bläser, Ikenmeyer, Lysikov, Pandey, Schreyer ’21]



•Theorem (Bürgisser, D., Makam, Walter, Wigderson):  
   
 


M ∈ ℤd×n (ℂ×)d ↷ ℂn v, w ∈ ℚ(i)n . b
v, w and M . (d, n, b)

•For non-commutative group actions: 
 
 



•Orbit closure intersection problem admits polynomial time algorithm for: 
Left-right action,  [Derksen,Makam ’18], [Allen-Zhu, Garg, Li, Oliveira, Wigderson ’18], 	 [Ivanyos, Qiao, Subrahmanyam ’18] 
simultaneous conjugation,   [Derksen, Makam ’18] 
quiver representations,  
actions of groups of bounded dimension   [Mulmuley ’12] 
 …
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then 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• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• Test if . If not equal, {i ∣ vi = 0} = {i ∣ wi = 0} Tv ≠ Tw .

• Delete the columns  of  with .ωi M vi = 0
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• For , check . If all equal, . If not, .α ∈ L xα(v) = xα(w) Tv = Tw Tv ≠ Tw
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Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,  
such that  is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

•Kannan & Bachem (’79): The diagonal matrix and the multiplier matrices  can be 
computed in polynomial time. 

U, W

•  gives an isomorphism between the lattices 


W
{α ∈ ℤn ∣ (UMW)α = 0} → {α ∈ ℤn ∣ Mα = 0}

•As  is diagonal, a basis for the latter lattice is given by the columns  of 
, where  is the rank of .
UMW W(r+1), …, W(n)

W r M
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•Input:  with bit-lengths bounded by   


α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

•  Hence it is not effi log xα(v) = O(b2b) . xα(v)

•Factor refi 
 vα1

1 vα2
2 …vαn

n
?= wα1

1 wα2
2 …wαn

n → d = gcd(vi, wj)
→ dαi−αjvα1

1 …(vi/d)αi…vαn
n

?= wα1
1 …(wj /d)αj…wαn

n

•Theorem (Ge ’93): Laurent monomial equivalence over a number field K can be tested in 
polynomial time.
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H ← F
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(ϵμ1, ϵμ2, …, ϵμd) ⋅ v = lim
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• Hilbert-Mumford Criterion: If then there exists  with  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C
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•Theorem:  contains a unique closed orbit Moreover, we 
have  


Tv Tṽ .

Tv ∩ Tw ≠ Ø ⟺ Tṽ = Tw̃ .

•Defi
  


C
C

L = C ∩ (−C) .

•Proposition: Let  denote the lineality space of . Then  
   

 



L(v) C(v)
TvL(v) = Tv .

vL(v)

(vL(v))i = {vi  if  − ωi ∈ C(v)
0  otherwise.

•Corollary: There is a poly-time reduction from orbit closure 
intersection problem to orbit equality problem.
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Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

• Using linear programming, construct .vL(v), wL(w)

• Use the algorithm for orbit equality to test  

TvL(v) = TwL(w) .

• If equal, then the orbit closures intersect. If not, the intersection is 
empty.



Thanks!


