
Polynomial Time Algorithms in Invariant Theory
for Torus Actions

M. Levent Doğan 
21.04.2022 

 
 

Based on a joint work with P. Bürgisser, V. Makam, M. Walter, A. Wigderson

Permanent vs Determinant

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc

Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

• , 
whenever are diagonal matrices.
per(LAR) = per(L)per(A)per(R)

L, R

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc

• , 
for every
det(LAR) = det(L) det(A) det(R)

L, R ∈ ℂn×n

Permanent vs Determinant

• per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

• per([a b
c d]) = ad + bc

• , 

per(LAR) = per(L)per(A)per(R)

L, R

• Matrix scaling

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

• det(A) = ∑
σ∈Sn

n

∏
i=1

sgn(σ)aiσ(i)

• det([a b
c d]) = ad − bc

• , 

det(LAR) = det(L) det(A) det(R)

L, R ∈ ℂn×n

• Gaussian elimination

Adj(G)G

Biadjacency matrix per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) =

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
 3

per(Adj(G)) =
=

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
 3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
 3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

•Theorem (Valiant ‘79) : The complexity of computing the permanent of an matrix is
#P-complete.

n × n (0,1)−

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

Adj(G)G

Biadjacency matrix per(Adj(G)) = 1per(Adj(G)) = 1 + 1per(Adj(G)) = 1 + 1 + 1 
 3

per(Adj(G)) =
=

•Fact: #perfect matchings of .per(Adj(G)) = G

•Theorem (Valiant ‘79) : The complexity of computing the permanent of an matrix is
#P-complete.

n × n (0,1)−

•Even though the decision problem is in P !

per(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

•
  

  

 : vector of row sums 

 : vector of column sums

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•
  

 

  

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
If is a positive, doubly stochastic matrix, then  

A ∈ ℝn×n

per(A) ≥
n!
nn

 

 
 

1
n

Jn =

1/n 1/n … 1/n
1/n ⋱ ⋮
⋮ ⋱ ⋮

1/n … … 1/n

r = 1
c = 1

•
  

 

  

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
  

A ∈ ℝn×n

per(A) ≥
n!
nn

•Assume is a positive matrix, are positive diagonal matrices. 
 is a matrix.

A ∈ ℝn×n (r, c)− L, R
⇒ LAR (Lr(AR), Rc(LA))−

•
  

 

  

A =

a11 a12 … a1n
a21 ⋱ ⋮
⋮ ⋱ ⋮

an1 … … ann

r(A) = (
n

∑
i=1

a1i, …,
n

∑
i=1

ani)

c(A) = (
n

∑
i=1

ai1, …,
n

∑
i=1

ain)

•Van der Waerden’s conjecture (Egoritsjev ‘80, Falikman ’80):  
  

A ∈ ℝn×n

per(A) ≥
n!
nn

•Assume is a positive matrix, are positive diagonal matrices. 

A ∈ ℝn×n (r, c)− L, R
⇒ LAR (Lr(AR), Rc(LA))−

•Idea: If there exist with doubly stochastic then  L, R LAR

per(A) =
per(LAR)

per(L)per(R)
≥

n!
per(L)per(R)nn

Matrix Scaling

Matrix Scaling
• Definition: is called -scalable if there exist positive

diagonal matrices such that 

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

Matrix Scaling
• Definition: is called -scalable if there exist positive

diagonal matrices such that 

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

[
1 1 1
1 0 0
1 0 0]

[
1 1 0
1 1 0
0 0 1]

[
1 1 0
1 1 0
1 1 1]

Matrix Scaling
• Definition: is called -scalable if there exist positive

diagonal matrices such that 

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

[
1 1 1
1 0 0
1 0 0]

[
1 1 0
1 1 0
0 0 1]

[
1 1 0
1 1 0
1 1 1]

Not scalable, per(A) = 0.

Scalable, L = [
1/2

1/2
1]

Almost scalable,
ε−1

ε−1

ε2
A [

ε
ε

ε−2] =
1 1 0
1 1 0
ε3 ε3 1

Matrix Scaling
• Defi

  

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

• Definition: is called almost -scalable if for every
there exist positive diagonal matrices such that 
  
with

A (r, c) ε > 0
L, R

(r(LAR), c(LAR)) = (r, c′￼)
∥c − c′￼∥2 < ε .

[
1 1 1
1 0 0
1 0 0]

[
1 1 0
1 1 0
0 0 1]

[
1 1 0
1 1 0
1 1 1]

Not scalable, per(A) = 0.

Scalable, L = [
1/2

1/2
1]

Almost scalable,
ε−1

ε−1

ε2
A [

ε
ε

ε−2] =
1 1 0
1 1 0
ε3 ε3 1

Matrix Scaling
• Defi

  

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

• Defi
  
  

A (r, c) ε > 0
L, R

(r(LAR), c(LAR)) = (r, c′￼
∥c − c′￼

• Questions:  
1) Decide if a given is scalable/almost scalable. 
2) Find the scaling .

A
LAR = B

[
1 1 1
1 0 0
1 0 0]

[
1 1 0
1 1 0
0 0 1]

[
1 1 0
1 1 0
1 1 1]

Not scalable, per(A) = 0.

Scalable, L = [
1/2

1/2
1]

Almost scalable,
ε−1

ε−1

ε2
A [

ε
ε

ε−2] =
1 1 0
1 1 0
ε3 ε3 1

Matrix Scaling
• Defi

  

A (r, c)
L, R

(r(LAR), c(LAR)) = (r, c) .

• Defi
  
  

A (r, c) ε > 0
L, R

(r(LAR), c(LAR)) = (r, c′￼
∥c − c′￼

• Questions:  
1) Decide if a given is scalable/almost scalable. 
2) Find the scaling .

A
LAR = B

[
1 1 1
1 0 0
1 0 0]

[
1 1 0
1 1 0
0 0 1]

[
1 1 0
1 1 0
1 1 1]

Not scalable, per(A) = 0.

Scalable, L = [
1/2

1/2
1]

Almost scalable,
ε−1

ε−1

ε2
A [

ε
ε

ε−2] =
1 1 0
1 1 0
ε3 ε3 1

Max-flow-min-cut
formulationSinkhorn-Knopp

algorithm 

[Linial,Samorodnitsky, Wigderson ’04] : The first
deterministic polynomial time approximation algorithm

for the permanent.

Scaling Actions

Scaling Actions

• : dimensional algebraic torus 
 : dimensional vector space

T = (ℂ×)d d−
V = ℂn n−

Scaling Actions

• : dimensional algebraic torus 

T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

Scaling Actions

• : dimensional algebraic torus 

T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

Commutative groups stabilize a flag: 
0 = V0 ⊂ V1 ⊂ V2 ⊂ … ⊂ Vn = ℂn .

Representations of reductive groups
are completely reducible: 

V = W1 ⊕ W2 ⊕ … ⊕ Wm

Scaling Actions

• : dimensional algebraic torus 

T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

• Suppose : ω1, ω2, …, ωn ∈ ℤd

(t1, t2, …, td) ⋅ (v1, v2, …, vn) = (tω1 v1, tω2 v2, …, tωn vn)

Scaling Actions

• : dimensional algebraic torus 

T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

• Suppose : ω1, ω2, …, ωn ∈ ℤd

(t1, t2, …, td) ⋅ (v1, v2, …, vn) = (tω1 v1, tω2 v2, …, tωn vn)

• Each coordinate is scaled according to the weight .vi ωi

Scaling Actions

• : dimensional algebraic torus 

T = (ℂ×)d d−
V = ℂn n−

• Tori = the family of connected, commutative, reductive groups.

• Suppose : ω1, ω2, …, ωn ∈ ℤd

(t1, t2, …, td) ⋅ (v1, v2, …, vn) = (tω1 v1, tω2 v2, …, tωn vn)

• Each coordinate is scaled according to the weight .vi ωi

• Definition: The weight matrix of is the integer
matrix having as its i-th column.

(ℂ×)d ↷ ℂn

M ∈ ℤd×n ωi

M = [1 1]

M = [1 −1]

M = [1 0
0 1]

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  
 : the topological closure of

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Decide whether Tv = Tw .

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Decide whether Tv ∩ Tw = Ø .

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
Decide whether w ∈ Tv .

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
w ∈ Tv .

•Nullcone membership problem: 
Decide whether 0 ∈ Tv .

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
w ∈ Tv .

•Nullcone membership problem: 
Decide whether 0 ∈ Tv .

•Capacity: 
cap(v) := inf

t∈T
∥tv∥2

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
w ∈ Tv .

•Nullcone membership problem: 
Decide whether 0 ∈ Tv .

•Capacity: 
cap(v) := inf

t∈T
∥tv∥2

•  

Fv(t) := ∥tv∥2 = ∑
i

|vi |
2 | t |2ωi

= ∑
i

|vi |
2

d

∏
j=1

| tj |
2ωij

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
w ∈ Tv .

•Nullcone membership problem: 
Decide whether 0 ∈ Tv .

•Capacity: 
cap(v) := inf

t∈T
∥tv∥2

•  

Fv(t) := ∥tv∥2 = ∑
i

|vi |
2 | t |2ωi

= ∑
i

|vi |
2

d

∏
j=1

| tj |
2ωij

•Assume and (ℂ×)d ↷ ℂn v, w ∈ ℂn .

• : the orbit of  

Tv = {tv ∣ t ∈ T} v
Tv Tv

•Orbit equality problem:  
Tv = Tw .

•Orbit closure intersection problem: 
Tv ∩ Tw = Ø .

•Orbit closure containment problem: 
w ∈ Tv .

•Nullcone membership problem: 
Decide whether 0 ∈ Tv .

•Capacity: 
cap(v) := inf

t∈T
∥tv∥2

•  

Fv(t) := ∥tv∥2 = ∑
i

|vi |
2 | t |2ωi

= ∑
i

|vi |
2

d

∏
j=1

| tj |
2ωij

Note: In the case of matrix scaling, 
Nullcone membership ~ is the matrix scalable? 
Orbit closure containment problem ~ is the matrix almost scalable? 
Minimizing ~ scaling. ∇Fv (r, c)−

• Unconstrained geometric program:  
 

 

where , for some positive and

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Compare to Gurvits’ capacity optimization:  Cap1(p) = inf
x>0

p(x)
x1x2…xn

log Cap1(p) = inf
y∈ℝn

(F(y) − ⟨y, 1⟩) .

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Compare to Gurvits’ capacity optimization:  Cap1(p) = inf
x>0

p(x)
x1x2…xn

log Cap1(p) = inf
y∈ℝn

(F(y) − ⟨y, 1⟩) .

• Duality:  

where is the Kullback-Leibler divergence between distributions

inf
x∈ℝn

F(x) = sup{−DKL(p ∣ ∣ q) ∣ ∑
i

piωi = 0, ∑
i

pi = 1, p ≥ 0}

DKL = − ∑
i

pi log
pi

qi
p, q .

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Compare to Gurvits’ capacity optimization:  Cap1(p) = inf
x>0

p(x)
x1x2…xn

log Cap1(p) = inf
y∈ℝn

(F(y) − ⟨y, 1⟩) .

• Duality:  

where is the Kullback-Leibler divergence between distributions

inf
x∈ℝn

F(x) = sup{−DKL(p ∣ ∣ q) ∣ ∑
i

piωi = 0, ∑
i

pi = 1, p ≥ 0}

DKL = − ∑
i

pi log
pi

qi
p, q .

~ entropy maximization (is the Shannon entropy when)DKL q = 1

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Compare to Gurvits’ capacity optimization:  Cap1(p) = inf
x>0

p(x)
x1x2…xn

log Cap1(p) = inf
y∈ℝn

(F(y) − ⟨y, 1⟩) .

• Duality:  

inf
x∈ℝn

F(x) = sup{−DKL(p ∣ ∣ q) ∣ ∑
i

piωi = 0, ∑
i

pi = 1, p ≥ 0}

DKL = − ∑
i

pi log
pi

qi
p, q .

• Both the primal and the dual problem can be solved by the means of convex optimization (ellipsoid method / interior-
point method). 
[Gurvits ’04], [Kortanek, Xu, Ye ’97], [Andersen, Ye ’98], [Singh, Vishnoi ’14], [Straszak,Vishnoi ’19], [Bürgisser, Li, Nieuwboer, Walter ’20]

• Unconstrained geometric program:  
 

 

minimize f(z)
sbj . to z ∈ ℝd, z > 0.

f(z) =
n

∑
i=1

qizωi q > 0 ω1, …, ωn ∈ ℝd .

• is convex!F(x) = log f(ex)

• Compare to Gurvits’ capacity optimization:  Cap1(p) = inf
x>0

p(x)
x1x2…xn

log Cap1(p) = inf
y∈ℝn

(F(y) − ⟨y, 1⟩) .

• Duality:  

inf
x∈ℝn

F(x) = sup{−DKL(p ∣ ∣ q) ∣ ∑
i

piωi = 0, ∑
i

pi = 1, p ≥ 0}

DKL = − ∑
i

pi log
pi

qi
p, q .

• Both the primal and the dual problem can be solved by the means of convex optimization (ellipsoid method / interior-
point method). 

• Ongoing research for non-commutative groups: [Bürgisser, Franks, Garg, Oliveira, Walter, Wigderson ’19]

•Theorem (Bürgisser, D., Makam, Walter, Wigderson):  
Let be the weight matrix of and suppose Let denote the
maximum of the bit-lengths of the entries of Then, in poly time we can decide
orbit equality, orbit closure intersection and orbit closure containment.

M ∈ ℤd×n (ℂ×)d ↷ ℂn v, w ∈ ℚ(i)n . b
v, w and M . (d, n, b)

•Theorem (Bürgisser, D., Makam, Walter, Wigderson):  

M ∈ ℤd×n (ℂ×)d ↷ ℂn v, w ∈ ℚ(i)n . b
v, w and M . (d, n, b)

•For non-commutative group actions: 
Orbit equality : as hard as graph isomorphism problem 
Orbit closure intersection : conjectured to be in P. Geometric complexity theory program [Mulmuley, Sohoni ‘01] 

Orbit closure containment : NP-hard / as hard as tensor rank [Bläser, Ikenmeyer, Lysikov, Pandey, Schreyer ’21]

•Theorem (Bürgisser, D., Makam, Walter, Wigderson):  

M ∈ ℤd×n (ℂ×)d ↷ ℂn v, w ∈ ℚ(i)n . b
v, w and M . (d, n, b)

•For non-commutative group actions: 
 
 

•Orbit closure intersection problem admits polynomial time algorithm for: 
Left-right action, [Derksen,Makam ’18], [Allen-Zhu, Garg, Li, Oliveira, Wigderson ’18], 	 [Ivanyos, Qiao, Subrahmanyam ’18] 
simultaneous conjugation, [Derksen, Makam ’18] 
quiver representations,  
actions of groups of bounded dimension [Mulmuley ’12] 
 …

 ⃗v = 22
h = 558

 ⃗v = − 20
h = 600

• How to tell if two shapshots belong to the same ball?

 ⃗v = 22
h = 558

 ⃗v = − 20
h = 600

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

 E =
1
2

mv2 + mgh

 ⃗v = 22
h = 558

 ⃗v = − 20
h = 600

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

E =
1
2

mv2 + mgh

• An invariant is a polynomial such that f ∈ ℂ[x1, x2, …, xn]
∀t ∈ T, v ∈ V, f(t ⋅ v) = f(v)

 ⃗v = 22
h = 558

 ⃗v = − 20
h = 600

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

E =
1
2

mv2 + mgh

• An invariant is a polynomial such that f ∈ ℂ[x1, x2, …, xn]
∀t ∈ T, v ∈ V, f(t ⋅ v) = f(v)

• is a finitely generated
subalgebra of , called the ring of invariants.
ℂ[x1, x2, …, xn]T = {f ∣ f is an invariant}

ℂ[x1, …, xn]

 ⃗v = 22
h = 558

 ⃗v = − 20
h = 600

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

E =
1
2

mv2 + mgh

• An invariant is a polynomial such that f ∈ ℂ[x1, x2, …, xn]
∀t ∈ T, v ∈ V, f(t ⋅ v) = f(v)

• is a fi

ℂ[x1, x2, …, xn]T = {f ∣ f is an invariant}

ℂ[x1, …, xn]

• Mumford’s Theorem: 
Tv ∩ Tw ≠ Ø ⟺ ∀f ∈ ℂ[x1, x2, …, xn]T, f(v) = f(w) .

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

E =
1
2

mv2 + mgh

• An invariant is a polynomial such that f ∈ ℂ[x1, x2, …, xn]
∀t ∈ T, v ∈ V, f(t ⋅ v) = f(v)

• is a fi

ℂ[x1, x2, …, xn]T = {f ∣ f is an invariant}

ℂ[x1, …, xn]

• Mumford’s Theorem: 
Tv ∩ Tw ≠ Ø ⟺ ∀f ∈ ℂ[x1, x2, …, xn]T, f(v) = f(w) .

ℂ[x, y]T = ℂ[xy]

ℂ[x, y]T = ℂ

• How to tell if two shapshots belong to the same ball?

• The total energy of the ball is an invariant: 

E =
1
2

mv2 + mgh

• An invariant is a polynomial such that f ∈ ℂ[x1, x2, …, xn]
∀t ∈ T, v ∈ V, f(t ⋅ v) = f(v)

• is a fi

ℂ[x1, x2, …, xn]T = {f ∣ f is an invariant}

ℂ[x1, …, xn]

• Mumford’s Theorem: 
Tv ∩ Tw ≠ Ø ⟺ ∀f ∈ ℂ[x1, x2, …, xn]T, f(v) = f(w) .

• If is generated by the invariants
then 

ℂ[x1, x2, …, xn]T f1, f2, …, fk

Tv ∩ Tw ≠ Ø ⟺ ∀i ∈ [k], fi(v) = fi(w) .

ℂ[x, y]T = ℂ[xy]

ℂ[x, y]T = ℂ

Invariants of Scaling Actions

Invariants of Scaling Actions
• Polynomial invariant: , 

 for every
f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 
, which admits a Hilbert

basis, .
S = {α ∈ ℕn ∣ Mα = 0}

ℋ

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

• might have exponentially large cardinality!ℋ

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

• might have exponentially large cardinality!ℋ

• Rational invariants: , 

 for every .

φ =
f
g

∈ ℂ(x1, x2, …, xn)

φ(tv) = φ(v) t ∈ T, v ∈ V

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

• might have exponentially large cardinality!ℋ

• Rational invariants: , 

φ =
f
g

∈ ℂ(x1, x2, …, xn)

φ(tv) = φ(v) t ∈ T, v ∈ V

• Spanned by invariant Laurent monomials: 
{xα ∣ α ∈ ℤn, Mα = 0}

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

• might have exponentially large cardinality!ℋ

• Rational invariants: , 

φ =
f
g

∈ ℂ(x1, x2, …, xn)

φ(tv) = φ(v) t ∈ T, v ∈ V

• Spanned by invariant Laurent monomials: 
{xα ∣ α ∈ ℤn, Mα = 0}

• Exponent vectors form a lattice: 
, which admits a lattice

basis, .
L = {α ∈ ℤn ∣ Mα = 0}

ℬ

Invariants of Scaling Actions
• Polynomial invariant: , 

f ∈ ℂ[x1, x2, …, xn]

f(tv) = f(v) t ∈ T, v ∈ V .

• The invariants are spanned by invariant monomials: 
{xα ∣ α ∈ ℕn, Mα = 0}

• Exponent vectors form a semigroup: 

S = {α ∈ ℕn ∣ Mα = 0}

ℋ

• is generated by .ℂ[x1, …, xn]T {xα ∣ α ∈ ℋ}

• might have exponentially large cardinality!ℋ

• Rational invariants: , 

φ =
f
g

∈ ℂ(x1, x2, …, xn)

φ(tv) = φ(v) t ∈ T, v ∈ V

• Spanned by invariant Laurent monomials: 
{xα ∣ α ∈ ℤn, Mα = 0}

• Exponent vectors form a lattice: 

L = {α ∈ ℤn ∣ Mα = 0}

ℬ

• has cardinality at most .ℬ n

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The field of invariants contains : . 
 separates the lines with finite slope. It does not separate

the y-axis and the origin.

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

Algorithm: Orbit Equality
• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

Algorithm: Orbit Equality
• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• Test if . If not equal, {i ∣ vi = 0} = {i ∣ wi = 0} Tv ≠ Tw .

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

Algorithm: Orbit Equality
• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• Test if . If not equal, {i ∣ vi = 0} = {i ∣ wi = 0} Tv ≠ Tw .

• Delete the columns of with .ωi M vi = 0

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

Algorithm: Orbit Equality
• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• Test if . If not equal, {i ∣ vi = 0} = {i ∣ wi = 0} Tv ≠ Tw .

• Delete the columns of with .ωi M vi = 0

• Compute a lattice basis for  

 .L = {α ∈ ℤn ∣ Mα = 0}

• The ring of invariants is trivial :  
Orbit closures intersect at .

ℂ[x, y]T = ℂ
0

• The fi
fi

y/x ℂ(x, y)T = ℂ(y/x)
y/x

• Fact: Rational invariants separate orbits of vectors with full-
coordinates.

Algorithm: Orbit Equality
• Input: .v, w ∈ ℚ(i)n, M ∈ ℤd×n

• Test if . If not equal, {i ∣ vi = 0} = {i ∣ wi = 0} Tv ≠ Tw .

• Delete the columns of with .ωi M vi = 0

• Compute a lattice basis for  

 L = {α ∈ ℤn ∣ Mα = 0}

• For , check . If all equal, . If not, .α ∈ L xα(v) = xα(w) Tv = Tw Tv ≠ Tw

Computing a lattice basis

Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,
such that is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,
such that is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

•Kannan & Bachem (’79): The diagonal matrix and the multiplier matrices can be
computed in polynomial time.

U, W

Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,
such that is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

•Kannan & Bachem (’79): The diagonal matrix and the multiplier matrices can be
computed in polynomial time.

U, W

• gives an isomorphism between the lattices 
.

W
{α ∈ ℤn ∣ (UMW)α = 0} → {α ∈ ℤn ∣ Mα = 0}

Computing a lattice basis

•Smith Normal Form: Let . There exist unimodular matrices ,
such that is diagonal.

M ∈ ℤd×n U ∈ ℤd×d W ∈ ℤn×n

UMW

•Kannan & Bachem (’79): The diagonal matrix and the multiplier matrices can be
computed in polynomial time.

U, W

• gives an isomorphism between the lattices 

W
{α ∈ ℤn ∣ (UMW)α = 0} → {α ∈ ℤn ∣ Mα = 0}

•As is diagonal, a basis for the latter lattice is given by the columns of
, where is the rank of .
UMW W(r+1), …, W(n)

W r M

Laurent monomial equivalence

Laurent monomial equivalence

•Input: with bit-lengths bounded by  
Decide .

α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

Laurent monomial equivalence

•Input: with bit-lengths bounded by  

α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

• Hence it is not efficient to actually compute .log xα(v) = O(b2b) . xα(v)

Laurent monomial equivalence

•Input: with bit-lengths bounded by  

α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

• Hence it is not effi log xα(v) = O(b2b) . xα(v)

•Factor refinement: Pick two entries, one from left and one from right. Quotient out the gcd. 
 vα1

1 vα2
2 …vαn

n
?= wα1

1 wα2
2 …wαn

n → d = gcd(vi, wj)
→ dαi−αjvα1

1 …(vi/d)αi…vαn
n

?= wα1
1 …(wj /d)αj…wαn

n

Laurent monomial equivalence

•Input: with bit-lengths bounded by  

α ∈ ℤn, v, w ∈ ℚ(i)n b
xα(v) = xα(w)

• Hence it is not effi log xα(v) = O(b2b) . xα(v)

•Factor refi 
 vα1

1 vα2
2 …vαn

n
?= wα1

1 wα2
2 …wαn

n → d = gcd(vi, wj)
→ dαi−αjvα1

1 …(vi/d)αi…vαn
n

?= wα1
1 …(wj /d)αj…wαn

n

•Theorem (Ge ’93): Laurent monomial equivalence over a number field K can be tested in
polynomial time.

• The Newton cone of is the convex cone generated by the weights of . v v
C(v) = {∑

vi≠0

λiωi ∣ λi ≥ 0} ⊂ ℝd .

• The Newton cone of is the convex cone generated by the weights of . v v
C(v) = {∑

vi≠0

λiωi ∣ λi ≥ 0} ⊂ ℝd .

• Proposition: There is a bijection 

{Faces of C(v)} ↔ {Orbits in Tv} .

• The Newton cone of is the convex cone generated by the weights of . v v
C(v) = {∑

vi≠0

λiωi ∣ λi ≥ 0} ⊂ ℝd .

• Proposition: There is a bijection 

{Faces of C(v)} ↔ {Orbits in Tv} .

• a face of  
supporting hyperplane for  

a normal vector for  

F ← C(v)
H ← F
μ ∈ ℤd ← H
vF := lim

ϵ→0
(ϵμ1, ϵμ2, …, ϵμd) ⋅ v = lim

ϵ→0
(ϵμ⋅ω1v1, …, ϵμ⋅ωnvn) .

• The Newton cone of is the convex cone generated by the weights of . v v
C(v) = {∑

vi≠0

λiωi ∣ λi ≥ 0} ⊂ ℝd .

• Proposition: There is a bijection 

{Faces of C(v)} ↔ {Orbits in Tv} .

• a face of  
  

  

F ← C(v)
H ← F
μ ∈ ℤd ← H
vF := lim

ϵ→0
(ϵμ1, ϵμ2, …, ϵμd) ⋅ v = lim

ϵ→0
(ϵμ⋅ω1v1, …, ϵμ⋅ωnvn) .

• Hilbert-Mumford Criterion: If then there exists with  Tw ⊂ Tv, μ ∈ ℤd

lim
ϵ→0

(ϵμ1, ϵμ2, …, ϵμd) ⋅ v ∈ Tw .

• The Newton cone of is the convex cone generated by the weights of . v v
C(v) = {∑

vi≠0

λiωi ∣ λi ≥ 0} ⊂ ℝd .

• Proposition: There is a bijection 

{Faces of C(v)} ↔ {Orbits in Tv} .

• a face of  
  

  

F ← C(v)
H ← F
μ ∈ ℤd ← H
vF := lim

ϵ→0
(ϵμ1, ϵμ2, …, ϵμd) ⋅ v = lim

ϵ→0
(ϵμ⋅ω1v1, …, ϵμ⋅ωnvn) .

• Hilbert-Mumford Criterion: If then there exists with  Tw ⊂ Tv, μ ∈ ℤd

lim
ϵ→0

(ϵμ1, ϵμ2, …, ϵμd) ⋅ v ∈ Tw .

• Corollary:  

 

is a bijection.

{Faces of C(v)} → {Orbits in Tv}
F ↦ TvF

•Theorem: contains a unique closed orbit Moreover, we
have  

Tv Tṽ .

Tv ∩ Tw ≠ Ø ⟺ Tṽ = Tw̃ .

•Theorem: contains a unique closed orbit Moreover, we
have  

Tv Tṽ .

Tv ∩ Tw ≠ Ø ⟺ Tṽ = Tw̃ .

•Define the lineality space of a cone as the the largest
subspace contained in . 

C
C

L = C ∩ (−C) .

•Theorem: contains a unique closed orbit Moreover, we
have  

Tv Tṽ .

Tv ∩ Tw ≠ Ø ⟺ Tṽ = Tw̃ .

•Defi
  

C
C

L = C ∩ (−C) .

•Proposition: Let denote the lineality space of . Then  
 the unique closed orbit in  
Moreover, can be constructed in polynomial time using
linear programming. 

L(v) C(v)
TvL(v) = Tv .

vL(v)

(vL(v))i = {vi if − ωi ∈ C(v)
0 otherwise.

•Theorem: contains a unique closed orbit Moreover, we
have  

Tv Tṽ .

Tv ∩ Tw ≠ Ø ⟺ Tṽ = Tw̃ .

•Defi
  

C
C

L = C ∩ (−C) .

•Proposition: Let denote the lineality space of . Then  
  

 

L(v) C(v)
TvL(v) = Tv .

vL(v)

(vL(v))i = {vi if − ωi ∈ C(v)
0 otherwise.

•Corollary: There is a poly-time reduction from orbit closure
intersection problem to orbit equality problem.

Algorithm: Orbit Closure Intersection

Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

• Using linear programming, construct .vL(v), wL(w)

Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

• Using linear programming, construct .vL(v), wL(w)

• Use the algorithm for orbit equality to test  

 TvL(v) = TwL(w) .

Algorithm: Orbit Closure Intersection

• Input: v, w ∈ ℚ(i)n, M ∈ ℤd×n .

• Using linear programming, construct .vL(v), wL(w)

• Use the algorithm for orbit equality to test  

TvL(v) = TwL(w) .

• If equal, then the orbit closures intersect. If not, the intersection is
empty.

Thanks!

