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o per(LAR) = per(L)per(A)per(R),
whenever L, R are diagonal matrices.
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® Matrix scaling
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G Adj(G) per(A) =

Biadjacency matrix R 1 per(AdJ(G)) =1+1+1

® Theorem (Valiant ‘79) : The complexity of computing the permanent of an n X n (0,1)—matrix is
#P-complete.

)l

5

2 H Qis(i)

oces, =1



Biadjacency matrix
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* Even though the decision problem is in P !
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* Van der Waerden’s conjecture (Egoritsiev ‘80, Falikman ‘80): 1/n . 1/n
If A € R is a positive, doubly stochastic matrix, then
n! r=1

per(A) > —
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e Assume A € R is a positive (r, ¢c)—matrix, L, R are positive diagonal matrices.
= LAR is a (Lr(AR), Re(LA))—matrix.



e |dea: If there exist L, R with LAR doubly stochastic then
per(LAR) n!

per(A) = >

per(L)per(R)  per(L)per(R)n"
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Matrix Scaling

e Definition: A is called almost (r, ¢)-scalable if for every £ > 0
there exist positive diagonal matrices L, R such that
(r(LAR), ¢(LAR)) = (1, ¢’)
with ||c = ¢'||, < €.
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Matrix Scaling

®* Questions:
1) Decide if a given A is scalable/almost scalable.

2) Find the scaling LAR = B.
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Matrix Scaling

® Questions:

1) Decide if a given A is scalable/almost scalable. Max-flow-min-cut

formulation

2) Find the scaling LAR = B.  Sinkhorn-Knopp

algorithm

[Linial,Samorodnitsky, Wigderson ’04] : The first
deterministic polynomial time approximation algorithm
for the permanent.
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Scaling Actions



Scaling Actions

o T =(C*%: d—dimensional algebraic torus
V = C" : n—dimensional vector space



Scaling Actions

* Tori = the family of connected, commutative, reductive groups.



Scaling Actions

e

* Tori = the family of connected, commutative, reductive groups.

Commutative groups stabilize a flag:
O=V,cv,cV,c...cV, =C".

Representations of reductive groups
are completely reducible:



Scaling Actions

® Suppose W, @y, ...,», € 74

(tl’ tz, o td) y (Vl, Vo, ...,Vn) — (ta)l Vi, ta)z Vo, voey ta)” Vn)



Scaling Actions

t (xy) = (txty)

® Each coordinate v, is scaled according to the weight ..

o
(L.1)

(s.t)(.y)=(sr.ty)



Scaling Actions

t (xy) = (txty)

M=[1 -1]

e Definition: The weight matrix of (C*)? ~ C" is the integer 01
matrix M € Z%*" having w; as its i-th column.

°
(L.1)

(s.t)(.y)=(sr.ty)






e Assume (C)¢~ C"and v,w € C".



o Tv={tv|te€ T} :the orbit of v
Tv : the topological closure of Tv



e Assume (C¢~ C"and v,w € C".

o Tv=1{tv|t €T} :the orbit of v
Tv : the topological closure of Tv

e Orbit equality problem:
Decide whether Tv = Tw .



e Assume (C¢~ C"and v,w € C".
o Tv=1{tv|t €T} :the orbit of v

Tv : the topological closure of Tv

Decide whether 7v = Tw .

e Orbit closure intersection problem:
Decide whether TyNTw = @ .



e Assume (C¥¢~ C"and v,w € C".

o Tv=1{tv|t €T} :the orbit of v
Tv : the topological closure of Tv

Decide whether 7v = Tw .

Decide whether TyNTw = Q.

* Orbit closure containment problem:
Decide whether w € Tv.



e Assume (C¥¢~ C"and v,w € C".

o Tv={tv|te€ T} :the orbit of v
Tv : the topological closure of Tv

Decide whether 7v = Tw .

Decide whether TyNTw = Q.

Decide whether w € Tv .

* Nullcone membership problem:
Decide whether 0 € Tv.



e Assume (C*)¢ ~ C"and v,w € C". e Capacity:

cap(v) :=1nf ||tv]|,
o Tv={tv|t € T} :the orbit of v teT

Tv : the topological closure of Tv
Decide whether 7v = Tw .
Decide whether TvNTw =@ .
Decide whether w € Tv .

* Nullcone membership problem:
Decide whether 0 € Tv.
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* Nullcone membership problem:
Decide whether 0 € Tv.



e Assume (C¥¢~ C"and v,w € C".

o Tv={tv|te€ T} :the orbit of v
Tv : the topological closure of Tv

Decide whether 7v = Tw .

Decide whether TyNTw = Q.

Decide whether w € Tv.

* Nullcone membership problem:
Decide whether 0 € Tv.

cap(v) := it ||tv||,
t€T
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Note: In the case of matrix scaling,

e Null bershi blem: Nullcone membership ~ is the matrix scalable?
viicone membership probiem. Orbit closure containment problem ~ is the matrix almost scalable?

Decide whether 0 € Tv . Minimizing VF, ~ (r, ¢)—scaling.






* Unconstrained geometric program:
minimize f(z)
sbj.to z€R%z>0.
n

where f(z7) = Z q.2“i, for some positive g > 0 and w, ...,®, € R
i=1



* Unconstrained geometric program:
minimize f(z)
sbj.to z€R%z>0.
n

where f(z7) = Z q.2“i, for some positive g > 0 and w, ...,®, € R,
i=1

o F(x)=1logf(e") is convex!



X
o Compare to Gurvits’ capacity optimization: Cap(p) = inf PX)

x>0 X1Xy...X,
log Capy(p) = inf (F(y) —(y,1)).
yeR"



» Dulity: inf Fx) = sup{~Di(p 1) | Q2 p;=0, 2, pi=1,p 20}
Di . l |

where Dy, = — Zpl- log — is the Kullback-Leibler divergence between distributions p, g .
i 9



, Dudlity: inf F(x) = sup{~Dy(p |1 9) | Zpiwl- =0, Zpi =1,p >0}
Pi

where Dy, = Zpl log — is the Kullback- Lelbler dlvergence between distributions p, g .

qi ~ entropy maximization (Dy; is the Shannon entropy when g = | §



® Both the primal and the dual problem can be solved by the means of convex optimization (ellipsoid method / interior-

point method).
[Gurvits ‘04], [Kortanek, Xu, Ye ‘97], [Andersen, Ye ‘98], [Singh, Vishnoi '14], [Straszak,Vishnoi '19], [Birgisser, Li, Nieuwboer, Walter '20]



* Unconstrained geometric program:
minimize f(z)
sbj.to ze€R?z>0.
n

where f(z) = Z gz , for some positive ¢ > 0 and w,, ...,w, € RY.
i=1

o F(x)=1logf(e')is convex!

X
o Compare to Gurvits’ capacity optimization: Cap,(p) = int px)

x>0 X1X9... Xy
log Capy(p) = inf (F(y) —(y,1)).
yeR"

int F(x) =sup{—D w; = 0, =1,p>0
Inf F(x) = sup{=D,(p 11 9) | Zi:pl , Zi:p p20j
Pi

where Dy, = — Zpl- log - is the Kullback-Leibler divergence between distributions p, g .
; qi

® Both the primal and the dual problem can be solved by the means of convex optimization (ellipsoid method / interior-
point method).

* Ongoing research for non-commutative groups: [Birgisser, Franks, Garg, Oliveira, Walter, Wigderson '19]






® Theorem (Birgisser, D., Makam, Walter, Wigderson):
Let M € Z%" be the weight matrix of (C*)? ~ C" and suppose v,w € Q(i)". Let b denote the

maximum of the bit-lengths of the entries of v, w and M. Then, in poly(d, n, b) time we can decide
orbit equality, orbit closure intersection and orbit closure containment.



® For non-commutative group actions:
Orbit equality : as hard as graph isomorphism problem
Orbit closure intersection : conjectured to be in P.  Geometric complexity theory program [Mulmuley, Sohoni ‘01]
Orbit closure containment : NP-hard / as hard as tensor rank  [glaser, ikenmeyer, Lysikov, Pandey, Schreyer ‘211



® Orbit closure intersection problem admits polynomial time algorithm for:
Leff—rig hi’ CICHOI'I, [Derksen,Makam “18], [Allen-Zhu, Garg, Li, Oliveira, Wigderson ‘18], [lvanyos, Qiao, Subrahmanyam “18]
simultaneous conjugation, [Derksen, Makam 18]

quiver representations,
actions of groups of bounded dimension [Mulmuley '12]
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* How to tell if two shapshots belong to the same ball?
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* The total energy of the ball is an invariant:
)
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* An invariant is a polynomial f € C[x,, x,, .
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o Clxy,x,, ...,xn]T = {f | fis an invariant} is a finitely generated
subalgebra of C[x,, ..., x ], called the ring of invariants.
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* How to tell if two shapshots belong to the same ball2

* The total energy of the ball is an invariant:

L,
Ezamv + mgh

* An invariant is a polynomial f € C[x,, x,, ..., x,] such that
VieT,veV, f(t-v)=fy)

o Clxq,x,, ...,xn]T = {f | fis an invariant} is a
subalgebra of C[x, ..., x ], called the ring of invariants.

e Mumford’s Theorem:
TvnTw#0@ < Vfe Clx;,x),...,x 11, f(v) =fw).

.., n



* How to tell if two shapshots belong to the same ball2

Clx,y]" =C
* The total energy of the ball is an invariant:
1
E = Emv2 mgh

* An invariant is a polynomial f € C[x,, x,, ..., x,] such that
VieT,veV, f(t-v) =f(v)

t (xy) = (txty)
o Clx,x,, ...,xn]T = {f | fis an invariant} is a

subalgebra of C[x, ..., x ], called the ring of invariants. Clx.y]” = Clxy]

e Mumford’s Theorem:
TvnTw#0 < Vfe Clx;, Xy, ..., X 1%, fv) =f(w).

.., n

t(xy) = (txty)



t (x.y) = (tx.ty)

o If C[x;,x,,...,x ]" is generated by the invariants f;, f;, ..., f;
then

TvnTw# 0@ < VYVielk]l, f(v)=f(w).




Invariants of Scaling Actions



Invariants of Scaling Actions

* Polynomial invariant: f € Clx;, x5, ...,X,],
f(tv) =f(v) toreveryt € T,ve V.



Invariants of Scaling Actions

* The invariants are spanned by invariant monomials:
x*lae N, Ma =0}



Invariants of Scaling Actions

® Exponent vectors form a semigroup:
S={aeN"| Ma =0}, which admits a Hilbert
basis, .



Invariants of Scaling Actions

e Cl[x,...,x ]"is generated by {x* | a € #}.



Invariants of Scaling Actions

7% might have exponentially large cardinality!




Invariants of Scaling Actions
f

o Rational invariants: ¢ = g c C(x;, %y, .00 X)),

p(tv) = p(v) toreveryre T,ve V.

e 7% might have exponentially large cardinality!




Invariants of Scaling Actions

* Spanned by invariant Laurent monomials:
Ix*|ae 7", Ma =0}

e 7% might have exponentially large cardinality!




Invariants of Scaling Actions

* Exponent vectors form a lattice:
L={aeZ7"| Ma =0}, which admits a lattice
basis, 9.

e 7% might have exponentially large cardinality!




Invariants of Scaling Actions

e 7 might have exponentially large cardinality! * & has cardinality at most n.







t (xy) = (txty)



- The ring of invariants is trivial : C[x, y]’ = C
Orbit closures intersect at 0.

t (xy) = (txty)



- The field of invariants contains y/x : C(x, y)! = C(y/x).

y/x separates the lines with finite slope. It does not separate
the y-axis and the origin.




 Fact: Rational invariants separate orbits of vectors with full-
t(xy) = (tx.ty) coordinates.
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. The ring of invariants is trivial : C[x, y]! = C
Orbit closures intersect at (.
- The field of invariants contains y/x : C(x, y)! = C(y/x).

y/x separates the lines with finite slope. It does not separate
the y-axis and the origin.
 Fact: Rational invariants separate orbits of vectors with full-
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Computing a lattice basis



Computing a lattice basis

 Smith Normal Form: Let M € Z%". There exist unimodular matrices U € Z%4, W € 7"
such that UMW is diagonal.



Computing a lattice basis

e Kannan & Bachem ('79): The diagonal matrix and the multiplier matrices U, W can be
computed in polynomial time.



Computing a lattice basis

e |V gives an isomorphism between the lattices
{ae 7" | (UMW)a =0} - {a€e Z"| Ma = 0}.



Computing a lattice basis

e As UMW is diagonal, a basis for the latter lattice is given by the columns WU*D, . W™ of
W, where r is the rank of M.



Laurent monomial equivalence



Laurent monomial equivalence

* Input: a € 7", v,w € Q(i)" with bit-lengths bounded by b
Decide x*(v) = x%(w).



Laurent monomial equivalence

* log x*(v) = O(b2”). Hence it is not efficient to actually compute x*(v).



Laurent monomial equivalence

® Factor refinement: Pick two entries, one from left and one from right. Quotient out the gcd.
?

vlalv2“2 vo""‘iwlo‘lwzo‘2 wh — d=ged(v, .)

— d% “Jval (v/d)%. . .v" = w L (wild)%..



Laurent monomial equivalence

® Theorem (Ge '93): Laurent monomial equivalence over a number field K can be tested in
polynomial time.
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* Proposition: There is a bijection

{Faces of C(v)} VS {Orbits in T_v} .




 The Newton cone of v is the convex cone generated by the weights of v.
COv) ={ ) Aw;| 4 >0} CRY.
v;#0

There is a bijection

{Faces of C(v)} > {Orbifs in T_v} .

o F « aface of C(v)
H <« supporting hyperplane for F
u € 7% « a normal vector for H

vp = lim (e, €2, ..., €M) - v = lim (e"“vy, ..., ety ).
e—0 e—0




 The Newton cone of v is the convex cone generated by the weights of v.
COv)=1{ ) Aw;| >0} CR?,
v, 70

There is a bijection

{Faces of C(v)} > {Orbits in T_v} .

o F « aface of C(v)
H < supporting hyperplane for F
u € 7% « a normal vector for H

vp = lim (e"1, €2, ..., ") - v = Iim (e "y, ..., e ).
e—( c—()

e Hilbert-Mumford Criterion: If Tw C Tv, then there exists u € Z% with

lim (e*, ez, ..., et - v e Tw.
e—()




 The Newton cone of v is the convex cone generated by the weights of v.
COv)=1{ ) Aw;| >0} CR?,
v;#0

There is a bijection

{Faces of C(v)} > {Orbits in T_v} .

o I« atface of C(v)
H < supporting hyperplane for F
u € 7% « a normal vector for H

vp = lim (e"1, €2, ..., ") - v = Iim (e "y, ..., e ).
e—( c—()
o If Tw C Tv, then there exists © € Z¢ with
lim (e", ez, ...,et) - v e Tw.
c—0

e Corollary: N
[Faces of C(v)} — {Orbits in Tv}

F - Ty
is a bijection.






e Theorem: Tv contains a unique closed orbit TV . Moreover, we
have

TvnTw#0 < Tv=Tw.
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° Tv contains a unique closed orbit TV . Moreover, we
have

TvnTw#0 < Tv=Tw.

* Define the lineality space of a cone C as the the largest
subspace contained in C.

L=Cn(-0C).

® Proposition: Let L(v) denote the lineality space of C(v). Then
Tv;,, = the unique closed orbit in Tv .

Moreover, v, can be constructed in polynomial time using

linear programming.
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o Tv contains a unique closed orbit TV . Moreover, we
have

TvnTw#0 < Tv=Tw.

* Define the lineality space of a cone C as the the largest
subspace contained in C.

L=Cn(-0C).

° Let L(v) denote the lineality space of C(v). Then
Tv;,, = the unique closed orbit in T .

Moreover, v, ,, can be constructed in polynomial time using

linear programming.

v, it —w, € C(v)
Ve = {

O otherwise.

® Corollary: There is a poly-time reduction from orbit closure
intersection problem to orbit equality problem.





















