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Gibbs distribution

• spin configurations on the vertices of a graph

• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)
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Example

Potts model

• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Example

Potts model

• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Example

Potts model
• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}

• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Example

Potts model
• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Example

Potts model
• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Example

Potts model
• G = (V ,E ), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model



Efficient sampling

For the Gibbs distribution µ on G = (V ,E ), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ
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The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method
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Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .
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The idea

The sampling algorithm

Input: G = (V ,E ), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update
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Aim at ....

Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
v

u
v

Be careful...
We can not change the colours of the vertices arbitrarily.
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Failure
When both vi and ui change colour Update fails
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Because of the failures Update is an approximation algorithm
• the output is approximately Gibbs distributed
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`1-error for Update
• having a perfect sample at the input

• `1-error ≈ the probability of failure
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Approximation Sampler

The sampling algorithm that uses Update is approximation too

`1-error ≈ Prob[there is a failure is some iteration]



Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)
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Some Remarks

• The idea was proposed in [Efthymiou 2012]

• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]

• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm
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The same idea

The sampling algorithm

Input: G = (V ,E ), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr
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ui
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Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′
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vertex w is a disagreement with spins {blue, yellow}
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iteratively visit each vertex in G ′ and decide its configuration at τ
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x2

Priority to z ’s with σ(z) ∈ {blue, yellow}, next to disagreement.
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pick x2 and decide τ(x2) such that τ(x2) ∈ {blue, yellow}
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x2

the probability of disagreement is minimised by using coupling
maximally
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x1

x3

look for vertices z next to the disagreements such that
σ(z) ∈ {blue, yellow}
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the approach generates a perfect sample from µ′
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The catch . . .

Pr[τ(x3) = yellow] = max
{

0, 1− µ′x3 (σ(x3) | τ({u,w ,x2}))
µx3 (σ(x3) | σ({u,w ,x2}))

}
.



Coupling-Based Solution
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x3

The catch . . .

we need to compute µx3(σ(x3) | σ({u,w , x2})) efficiently



Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

The idea . . .

replace the Gibbs marginals with “good” approximations that can
be computed efficiently
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G′

u w

x2
x3

Observation . . .

influences from vertices with fixed configuration make the Gibbs
marginals at x3 too complicated an object
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G′

u w

x2
x3

However . . .

in most cases all but one vertex are far away (girth)
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G′

u w

x2
x3

Choosing the appropriate parameters . . .

essentially only one vertex influences the marginal
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G′

u w

x2
x3

Compute marginal but . . .

ignore the influence on x3 from u and w
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G′

u w

x2
x3

Effectively

use the marginal at x3 on the graph within the dashed curve
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Remark

we can compute the “simplified” marginal at x3 in O(1) steps
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u w

G′
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when the disagreements cannot propagate any more
the remaining vertices keep the same assignment
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To sum up . . .

(G, σ)

u w

G′

u w

x2

. . . another catch
disagreements should not

• reach neighbours of the vertex u

• cover all the vertices of a cycle in G ′
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u w

Otherwise . . .

we have a failure!



Failure Vs Approximation



Failure Vs Approximation

(G, σ)

u w

G′



Failure Vs Approximation

(G, σ)

u w

(G′, τ )

u w



Failure Vs Approximation

(G, σ)

u w

(G′, τ )

u w

If σ ∼ µ(·), then

||µupdate(·)− µ′(·)|| ≤ Pr[ Update(σ) Fails]
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The sampling algorithm

Input: G = (V ,E ), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr
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G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The `1 error for the algorithm

≈ probability of failure at some iteration



The iterative algorithm

The sampling algorithm

Input: G = (V ,E ), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The time complexity

the time complexity is O(|E | × |V |)
• for each iteration we compute O(|V |) marginals

• we have |E | iterations



From high girth to G(n,m)

• we considered high girth graphs
• typical instances of G(n,m) are a bit different

• there are short cycles far apart from each other

• we won’t discuss the challenges from the short cycles here . . .
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Gibbs Tree Uniqueness

r

h

σ(Lh)

lim
h→∞

||µ(·)−µ(· | σ(Lh))||{r} =

{
0
δ > 0

Uniqueness ⇐⇒ ∀σ(Lh) limh→∞ ||µ(·)− µ(· | σ(Lh))||{r} = 0
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• for many distributions here uniqueness is not established

• there are only conjectures

• for hypergraphs uniqueness is too restrictive a condition

• go beyond uniqueness
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Influence Condition

x3

max
η,θ
||mx3(· | η)−mx3(· | θ)|| < 1/d
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Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

• with Influence Cond., the failure probability is very small

• . . . this implies small failure probability for the “real process”

• the above can be true if contiguity holds
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We say that (G,σ) and (G∗,σ∗) are mutual contiguous when
for any property An we have that

lim
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Pr[(G∗,σ∗) ∈ An] = 0 iff lim
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Pr[(G,σ) ∈ An] = 0.
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Condition 2

Contiguity between the Gibbs distribution and the corresponding
Teacher Student model
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• Influence Cond. is more restrictive than Contiguity

• Contiguity holds up to “Replica Symmetry Breaking”

• For graphs, Influence Cond. coincides with the (conjectured)
Gibbs Uniqueness
• For hyper-graphs, Influence Cond. gets us beyond uniqueness
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• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions
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The end

Thank you!


