Charis Effhymiou

University of Warwich, UK.

G = (V, E) IR BG Eset of colour,

is proper 3-colouring of Giff \mathcal{O}^{\sim}

 $x \in u, w \in E \quad \sigma(w) \neq \sigma(w)$

Can we count efficiently the # proper u-colouring of GZ Equivalent Question: efficiently Can we generate Uniformly at Random a 4-colouring of G? FOCU SAMPLING Problem Solve the problem efficiently

Gibb distribution -> Generating samples from M. computationally hand. -> Grenerate approximate sample $\frac{11}{11} \frac{11}{11} \frac{11$ Find regions af the parameters of MG where we can have efficient approximate sampling.

When Ma Exhibits

Sac voot

0-(L)

Spatial Mixing

O

023

Sampling symmetric Gibbs distributions on the sparse random graph and hypergraph

Charis Efthymiou University of Warwick

Seminar on Geometry, Probability, and Computing.

GeomProbComp April, 2022

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

(ロ)、(型)、(E)、(E)、 E) の(()

• spin configurations on the vertices of a graph

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

• spin configurations on the vertices of a graph

- graph G=(V,E) and set of spins ${\mathcal S}$
- configuration space \mathcal{S}^V

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins S
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight (σ)

- spin configurations on the vertices of a graph
 - graph G=(V,E) and set of spins S
 - configuration space \mathcal{S}^V
- for each configuration σ specify weight (σ)
- configuration $\sigma \in \mathcal{S}^V$ is assigned probability measure

 $\mu(\sigma) \propto \texttt{weight}(\sigma)$

Potts model

(4日) (個) (目) (目) (目) (の)()

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Potts model

•
$$G = (V, E)$$
, $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $\texttt{weight}(\sigma) = \texttt{exp}(\beta \times \# \text{monochromatic-edges})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $\texttt{weight}(\sigma) = \texttt{exp}(\beta \times \# \text{monochromatic-edges})$

Remarks

• for q = 2 we have the Ising model

Potts model

- G = (V, E), $S = \{1, 2, \dots, q\}$ and $\beta \in \mathbb{R} \cup \{\pm \infty\}$
- for each $\sigma \in S^V$ we have (σ is a *q*-colouring)

 $\texttt{weight}(\sigma) = \exp(\beta \times \# \text{monochromatic-edges})$

Remarks

- for q = 2 we have the Ising model
- for $\beta = -\infty$ we have the Colouring model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

• worst-case the problem is computationally hard

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is computationally hard
- generate efficiently $\pmb{\sigma}$ which is distributed "close" to μ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

For the Gibbs distribution μ on G = (V, E), generate *efficiently* the configuration $\sigma \sim \mu$

- worst-case the problem is **computationally hard**
- generate efficiently $\pmb{\sigma}$ which is distributed "close" to μ
- the range of parameters of μ in which we can get "good" approximations of μ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

The sparse random graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

• expected degree d, i.e. $m = \frac{dn}{2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sparse random graph

G(n, m) is the random graph on *n* vertices and *m* edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

focus on approximate sampling

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

- focus on approximate sampling
- use concepts from physics for better algorithms

The sparse random graph

G(n, m) is the random graph on n vertices and m edges

- expected degree d, i.e. $m = \frac{dn}{2}$
- we focus on fixed d > 1
 - ... that is $m = \Theta(n)$

Sampling Problem on G(n, m)

- focus on approximate sampling
- use concepts from **physics** for better algorithms
- Cavity Method

Popular approaches to sampling problem

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

Popular approaches to sampling problem

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Markov Chain Monte Carlo method
- Message Passing Algorithms
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- Lovasz Local Lemma

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Markov Chain Monte Carlo method
- Message Passing Algorithms
- Weitz's Algorithm
- Barvinok's approach
- Lovasz Local Lemma

Our approach has nothing to do with all the above ...

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 りへぐ

The sampling algorithm

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty

Generate σ_0 according to the Gibbs distribution at G_0

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_{i-1} to generate efficiently σ_i

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

A D N A 目 N A E N A E N A B N A C N

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_{i-1} to generate efficiently σ_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_{i-1} to generate efficiently σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \ldots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_{i-1} to generate efficiently σ_i Output: σ_r

Example from the past

Example from the past

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Example with the Colouring Model

G

・ロト・「四ト・「田下・「田下・(日下

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

A random colouring of G can be seen as a random colouring of the simpler G' conditional that v, u receive different colours.

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Update

Input: random *q*-colouring of *G* and the vertices *v*, *u*. Output: random *q*-colouring of *G*, conditional *u*, *v* are assigned different colours.

Be careful...

We can not change the colours of the vertices arbitrarily.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ─ 目

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

<ロト < 団ト < 団ト < 団ト < 団ト 三 のQの</p>

イロト 不得 トイヨト イヨト

э

Failure When both v_i and u_i change colour Update fails

(日) (四) (日) (日) (日)

Failure Vs Approximation

Because of the failures Update is an approximation algorithm

(日) (四) (日) (日) (日)

Failure Vs Approximation

Because of the failures Update is an approximation algorithm

• the output is *approximately* Gibbs distributed

(日)

ℓ_1 -error for Update

- having a perfect sample at the input
- ℓ_1 -error \approx the probability of failure

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Approximation Sampler

The sampling algorithm that uses Update is approximation too

Approximation Sampler

The sampling algorithm that uses Update is approximation too

 ℓ_1 -error \approx Prob[there is a failure is some iteration]

(日) (四) (日) (日) (日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• for certain values of q the approach yields good approximation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an extensive chain
- care should be taken for v_i , u_i are at short distance

- for certain values of q the approach yields good approximation
- almost all pairs v_i, u_i are far away
 - failure implies that we have an *extensive* chain
- care should be taken for v_i , u_i are at short distance
 - the update for such pairs is different (didn't show that)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1

- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1
- [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
 - Potts model in random regular graphs
 - the algorithm for ferromagnetic Potts apply to G(n,m)

- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1
- [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
 - Potts model in random regular graphs
 - the algorithm for ferromagnetic Potts apply to G(n,m)
- all previous approaches are **special** to the sampled distribution

- The idea was proposed in [Efthymiou 2012]
 - specific to graph colourings
 - further improved in [Efthymiou 2016]
 - we need q > d + 1
- [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
 - Potts model in random regular graphs
 - the algorithm for ferromagnetic Potts apply to G(n,m)
- all previous approaches are **special** to the sampled distribution
- Aim here: the distribution to be a parameter of the algorithm

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

propose a sampler for symmetric distributions

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

propose a sampler for symmetric distributions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

Includes ...

• Ising model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

propose a sampler for symmetric distributions

- Ising model
- Potts model

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer
 - spin-glass distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

propose a sampler for symmetric distributions

Includes ...

- Ising model
- Potts model
 - including colourings
- k Not-all-Equal SAT
- k-spin model for $k \ge 2$ even integer
 - spin-glass distribution

Remark

The above are for both graphs and hypergraphs

▲□▶▲圖▶▲≣▶▲≣▶ ■ のQの

The sampling algorithm

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The sampling algorithm **Input**: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$

Generate σ_0 according to the Gibbs distribution at G_0

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \ldots, G_r = G$$

 $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$
 $-G_0 \text{ is empty}$

Generate σ_0 according to the Gibbs distribution at G_0 **Iteratively**: use σ_{i-1} to generate **efficiently** σ_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty

Generate σ_0 according to the Gibbs distribution at G_0 **Iteratively**: use σ_{i-1} to generate **efficiently** σ_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_{i-1} to generate efficiently σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

The sampling algorithm

Input: G = (V, E), Gibbs distribution μ

$$G_0, G_1, \dots, G_r = G$$

-get G_i from G_{i+1} by deleting the random edge $\{v_i, u_i\}$
 $-G_0$ is **empty**

Generate σ_0 according to the Gibbs distribution at ${\it G}_0$

Iteratively: use σ_{i-1} to generate **efficiently** σ_i

Output: σ_r

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

The challenge is to define Update, ... generate σ_i from σ_{i-1}

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$

The challenge is to define Update, ... generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth

The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The challenge is to define Update, \ldots generate σ_i from σ_{i-1}

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration σ distributed as in μ

The challenge is to define Update, \dots generate σ_i from σ_{i-1}

Setting ...

- symmetric Gibbs distribution
 - ... e.g. antiferromagnetic Ising, or Potts
- two graphs G and G' such that $G' = G \cup \{e\}$
 - ... assume that both are of high girth
- Gibbs distributions μ and μ' on G and G', resp.
- configuration ${m \sigma}$ distributed as in μ

Objective

Generate efficiently ${m au}$ distributed (approximately) as in μ'

G

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

G

G'

G

G'

G

G'

G

G'

G

G'

G

G'

 (G,σ)

G'

 (G,σ)

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

vertex w is a **disagreement** with spins {blue, yellow}

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

iteratively visit each vertex in G' and decide its configuration at τ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Priority to z's with $\sigma(z) \in \{\text{blue}, \text{yellow}\}$, next to disagreement.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

pick x_2 and decide $\tau(x_2)$ such that $\tau(x_2) \in \{\text{blue}, \text{yellow}\}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

the probability of disagreement is minimised by using **coupling maximally**

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

maximal coupling

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u,w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u,w\}))}\right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

maximal coupling

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mu'_{x_2}(\sigma(x_2) \mid \tau(\{u, w\}))}{\mu_{x_2}(\sigma(x_2) \mid \sigma(\{u, w\}))}\right\}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

the disagreement set now is $\{w, x_2\}$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

look for vertices z next to the disagreements such that $\sigma(z) \in \{ blue, yellow \}$

choose x_3 and repeat as before ...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 $\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$

 (G,σ)

G'

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

repeat in the same way for the rest of the vertices
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

disagreement cannot propagate any more

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

the remaining vertices keep the initial assignments.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the remaining vertices keep the initial assignments.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

the approach generates a **perfect** sample from μ'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The catch ...

$$\Pr[\tau(x_3) = \texttt{yellow}] = \max\left\{0, 1 - \frac{\mu'_{x_3}(\sigma(x_3) \mid \tau(\{u, w, x_2\}))}{\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))}\right\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The catch ...

we need to compute $\mu_{x_3}(\sigma(x_3) \mid \sigma(\{u, w, x_2\}))$ efficiently

The idea ...

replace the Gibbs marginals with "good" approximations that can be computed efficiently

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Observation ...

influences from vertices with fixed configuration make the Gibbs marginals at x_3 too complicated an object

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

However ...

in most cases all but one vertex are far away (girth)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

G'

Choosing the appropriate parameters ...

essentially only one vertex influences the marginal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

G'

Compute marginal but ...

ignore the influence on x_3 from u and w

Effectively

use the marginal at x_3 on the graph within the dashed curve

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Remark

we can compute the "simplified" marginal at x_3 in O(1) steps

G'

"maximal coupling"

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

$$(G,\sigma)$$

"maximal coupling"

$$\Pr[\tau(x_2) = \texttt{blue}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \tau(w))}{\mathfrak{m}_{x_2}(\sigma(x_2) \mid \sigma(w))}\right\}$$

the disagreement set is $\{w, x_2\}$

 (G,σ)

G'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

choose x_3 and repeat as before ...

$$\mathsf{Pr}[\tau(x_3) = \mathtt{yellow}] = \max\left\{0, 1 - \frac{\mathfrak{m}_{x_3}(\sigma(x_3) \mid \tau(x_2))}{\mathfrak{m}_{x_3}(\sigma(x_3) \mid \sigma(x_2))}\right\}.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

G'

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

when the disagreements cannot propagate any more the remaining vertices keep the same assignment

 (G,σ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

G'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 (G, σ)

... another catch

disagreements should not

- reach neighbours of the vertex *u*
- cover all the vertices of a cycle in G'

 (G,σ)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Otherwise . . .

we have a failure!

G'

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 (G,σ)

 (G',τ)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

If $\boldsymbol{\sigma} \sim \mu(\cdot)$, then

 $||\mu_{\text{update}}(\cdot) - \mu'(\cdot)|| \leq \Pr[\text{Update}(\sigma) \text{ Fails}]$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \dots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1} \text{ by deleting the random edge } \{v_i, u_i\}$ $-G_0 \text{ is empty}$ Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_i with Update to generate σ_{i+1}

Output: σ_r

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \ldots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_i with Update to generate σ_{i+1} Output: σ_r

The ℓ_1 error for the algorithm

 \approx probability of failure at some iteration

The sampling algorithm Input: G = (V, E), Gibbs distribution μ $G_0, G_1, \ldots, G_r = G$ $-\text{get } G_i \text{ from } G_{i+1}$ by deleting the random edge $\{v_i, u_i\}$ $-G_0$ is empty Generate σ_0 according to the Gibbs distribution at G_0 Iteratively: use σ_i with Update to generate σ_{i+1}

Output: σ_r

The time complexity

the time complexity is $O(|E| \times |V|)$

- for each iteration we compute O(|V|) marginals
- we have |E| iterations

▲□▶▲圖▶★≧▶★≧▶ ≧ のQで

(ロ)、(型)、(E)、(E)、 E) のQ(()

• we considered high girth graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- we considered high girth graphs
- typical instances of G(n, m) are a bit different
 - there are short cycles far apart from each other
- we won't discuss the challenges from the short cycles here ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

• good approximation \Rightarrow error $n^{-\Omega(1)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For which parameters of the Gibbs distribution on G(n, m) do we get good approximations?

- good approximation \Rightarrow error $n^{-\Omega(1)}$
- need to have local changes in the Update

▲ロト ▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$||\mu(\cdot)-\mu(\cdot | \sigma(L_h))||_{\{r\}}$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(日) (四) (日) (日) (日)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\int_{h}^{r} \lim_{h \to \infty} ||\mu(\cdot) - \mu(\cdot | \sigma(L_h))||_{\{r\}} = \begin{cases} 0\\ \delta > 0 \end{cases}$$

Uniqueness $\iff \forall \sigma(L_h) \lim_{h \to \infty} ||\mu(\cdot) - \mu(\cdot \mid \sigma(L_h))||_{\{r\}} = 0$

Use different condition...

Use different condition...

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- for many distributions here uniqueness is not established
 - there are only conjectures

Use different condition...

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- for many distributions here uniqueness is not established
 - there are only conjectures
- for hypergraphs uniqueness is too restrictive a condition
 - go beyond uniqueness

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

G'

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

$$\max_{\eta, heta} ||\mathfrak{m}_{x_3}(\cdot \mid \eta) - \mathfrak{m}_{x_3}(\cdot \mid heta)|| < 1/d$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Reconsider the order of randomness

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Uniform Model

- 1 random graph G(n, m)
- **(2)** randomness of σ
- 3 choices of Update

Teacher-Student Model

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Teacher-Student Model 1 generate σ^*

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Teacher-Student Model

- 1) generate σ^*
- ${\it 2 \ graph} \ G^*$

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Teacher-Student Model

- 1) generate σ^*
- ${\it 2} {\it graph} \ G^*$
- 3 choices of Update

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Planting Colourings

Teacher-Student Model

- 1 generate σ^*
- ${\it 2}$ graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Planting Colourings

Teacher-Student Model

- 1) generate σ^*
- ${\it 2}$ graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Planting Colourings

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniform Model

- **1** random graph G(n, m)
- **2** randomness of σ
- 3 choices of Update

Teacher-Student Model

- 1) generate σ^*
- ${\it 2} {\it graph} \ G^*$
- 3 choices of Update

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

• this process is simpler to analyse

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small

Teacher-Student Model

- 1) generate σ^*
- 2 graph G^*
- 3 choices of Update

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small
- ... this implies small failure probability for the "real process"

Uniform Model

- **1** random graph G(n, m)
- 2) randomness of σ
- 3 choices of Update

Teacher-Student Model

- 1 generate σ^*
- 2 graph G^*
- 3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G^*,σ^*)

- this process is simpler to analyse
- with Influence Cond., the failure probability is very small
- ... this implies small failure probability for the "real process"
- the above can be true if contiguity holds

Contiguity

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Contiguity

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty}\Pr[(G^*,\sigma^*)\in\mathcal{A}_n]=0\quad\text{iff}\quad\lim_{n\to\infty}\Pr[(G,\sigma)\in\mathcal{A}_n]=0.$$

Contiguity

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

We say that (G, σ) and (G^*, σ^*) are **mutual contiguous** when for any property \mathcal{A}_n we have that

$$\lim_{n\to\infty} \Pr[(\boldsymbol{G}^*,\boldsymbol{\sigma}^*)\in\mathcal{A}_n]=0 \quad \text{iff} \quad \lim_{n\to\infty}\Pr[(\boldsymbol{G},\boldsymbol{\sigma})\in\mathcal{A}_n]=0.$$

Contiguity implies ...

the two distributions have the same typical properties.

Condition 2

(ロ)、(型)、(E)、(E)、 E) の(()

Contiguity between the Gibbs distribution and the corresponding Teacher Student model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"

- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"
- For graphs, Influence Cond. coincides with the (conjectured) Gibbs Uniqueness

- Influence Cond. is more restrictive than Contiguity
 - Contiguity holds up to "Replica Symmetry Breaking"
- For graphs, Influence Cond. coincides with the (conjectured) Gibbs Uniqueness
- For hyper-graphs, Influence Cond. gets us beyond uniqueness
 - This gets us to "non-reconstruction" region

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

(ロ)、(型)、(E)、(E)、 E) の(()

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1
 - works for any symmetric Gibbs distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Presented a novel approximate sampling algorithm
 - underlying graph is G(n, m), or hypergraph $H_k(n, m)$
 - any fixed expected degree d > 1
 - works for any symmetric Gibbs distribution
 - running time $O((n \log n)^2)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses
- uses concepts from other research areas

- underlying graph is G(n, m), or hypergraph $H_k(n, m)$
- any fixed expected degree d > 1
- works for any symmetric Gibbs distribution
- running time $O((n \log n)^2)$
- accuracy $n^{-\Omega(1)}$
- performance in terms of the range of the parameters
 - for the anti-ferromagnetic distributions it outperform any other sampler for G(n, m) or H_k(n, m)
- applies to spin-glasses
- uses concepts from other research areas
 - contiguity is a tool developed to study Cavity's predictions

The end

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Thank you!