
efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

efthymiou
Pencil

Sampling symmetric Gibbs distributions on the
sparse random graph and hypergraph

Charis Efthymiou
University of Warwick

Seminar on Geometry, Probability, and Computing.

GeomProbComp April, 2022

Gibbs distribution

• spin configurations on the vertices of a graph

• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)

Gibbs distribution

• spin configurations on the vertices of a graph

• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)

Gibbs distribution

• spin configurations on the vertices of a graph
• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)

Gibbs distribution

• spin configurations on the vertices of a graph
• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)

Gibbs distribution

• spin configurations on the vertices of a graph
• graph G=(V,E) and set of spins S
• configuration space SV

• for each configuration σ specify weight(σ)

• configuration σ ∈ SV is assigned probability measure

µ(σ) ∝ weight(σ)

Example

Potts model

• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Example

Potts model

• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Example

Potts model
• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}

• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Example

Potts model
• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Example

Potts model
• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Example

Potts model
• G = (V ,E), S = {1, 2, . . . , q} and β ∈ R ∪ {±∞}
• for each σ ∈ SV we have (σ is a q-colouring)

weight(σ) = exp(β ×#monochromatic-edges)

Remarks
• for q = 2 we have the Ising model

• for β = −∞ we have the Colouring model

Efficient sampling

For the Gibbs distribution µ on G = (V ,E), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ

Efficient sampling

For the Gibbs distribution µ on G = (V ,E), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ

Efficient sampling

For the Gibbs distribution µ on G = (V ,E), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ

Efficient sampling

For the Gibbs distribution µ on G = (V ,E), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ

Efficient sampling

For the Gibbs distribution µ on G = (V ,E), generate efficiently
the configuration σ ∼ µ

• worst-case the problem is computationally hard

• generate efficiently σ which is distributed “close” to µ

• the range of parameters of µ in which we can get “good”
approximations of µ

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1

• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1
• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1
• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1
• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1
• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

The case of G(n,m)

The sparse random graph

G(n,m) is the random graph on n vertices and m edges

• expected degree d , i.e. m = dn
2

• we focus on fixed d > 1
• . . . that is m = Θ(n)

Sampling Problem on G(n,m)

• focus on approximate sampling

• use concepts from physics for better algorithms

• Cavity Method

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

Popular approaches to sampling problem

• Markov Chain Monte Carlo method

• Message Passing Algorithms

• Weitz’s Algorithm

• Barvinok’s approach

• Lovasz Local Lemma

Our approach has nothing to do with all the above . . .

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}

−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

The idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

Example from the past

Example with the Colouring Model

Example from the past

Example with the Colouring Model

Observation

Observation

G

u
v

G′

u
v

Observation

G

u
v

G′

u
v

A random colouring of G can be seen as a random colouring of the
simpler G ′ conditional that v , u receive different colours.

Observation

G

u
v

G′

u
v

A random colouring of G can be seen as a random colouring of the
simpler G ′ conditional that v , u receive different colours.

Observation

G

u
v

G′

u
v

A random colouring of G can be seen as a random colouring of the
simpler G ′ conditional that v , u receive different colours.

Aim at

Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
v

u
v

Be careful...
We can not change the colours of the vertices arbitrarily.

Aim at

Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
v

u
v

Be careful...
We can not change the colours of the vertices arbitrarily.

Aim at

Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
v

u
v

Be careful...
We can not change the colours of the vertices arbitrarily.

Aim at

Update

Input: random q-colouring of G and the vertices v , u.

Output: random q-colouring of G , conditional u, v are
assigned different colours.

u
v

u
v

Be careful...
We can not change the colours of the vertices arbitrarily.

How does Update look like?

How does Update look like?

vi
ui

How does Update look like?

vi
ui

vi
ui

How does Update look like?

vi
ui

vi
ui

vi
ui

... why approximate sampling?

vi
ui

vi
ui

vi
ui

... why approximate sampling?

vi
ui

vi
ui

vi
ui

... why approximate sampling?

vi
ui

vi
ui

vi
ui

... why approximate sampling?

vi
ui

vi
ui

vi
ui

... why approximate sampling?

vi
ui

vi
ui

vi
ui

Failure
When both vi and ui change colour Update fails

... why approximate sampling?

vi
ui

vi
ui

vi
ui

Failure Vs Approximation

Because of the failures Update is an approximation algorithm

... why approximate sampling?

vi
ui

vi
ui

vi
ui

Failure Vs Approximation

Because of the failures Update is an approximation algorithm
• the output is approximately Gibbs distributed

... why approximate sampling?

vi
ui

vi
ui

vi
ui

`1-error for Update
• having a perfect sample at the input

• `1-error ≈ the probability of failure

... why approximate sampling?

vi
ui

vi
ui

vi
ui

Approximation Sampler

The sampling algorithm that uses Update is approximation too

... why approximate sampling?

vi
ui

vi
ui

vi
ui

Approximation Sampler

The sampling algorithm that uses Update is approximation too

`1-error ≈ Prob[there is a failure is some iteration]

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation

• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance

• the update for such pairs is different (didn’t show that)

Some intuition for G(n,m)

• for certain values of q the approach yields good approximation
• almost all pairs vi , ui are far away

• failure implies that we have an extensive chain

• care should be taken for vi , ui are at short distance
• the update for such pairs is different (didn’t show that)

Some Remarks

• The idea was proposed in [Efthymiou 2012]

• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]

• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm

Some Remarks

• The idea was proposed in [Efthymiou 2012]
• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]

• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm

Some Remarks

• The idea was proposed in [Efthymiou 2012]
• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm

Some Remarks

• The idea was proposed in [Efthymiou 2012]
• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm

Some Remarks

• The idea was proposed in [Efthymiou 2012]
• specific to graph colourings
• further improved in [Efthymiou 2016]

• we need q > d + 1

• [Blanca, Galanis, Goldberg, Stefankovic, Vigoda, Yang 2020]
• Potts model in random regular graphs
• the algorithm for ferromagnetic Potts apply to G(n,m)

• all previous approaches are special to the sampled distribution

• Aim here: the distribution to be a parameter of the algorithm

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .

• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .

• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .

• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model

• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT

• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

Symmetric Gibbs distributions

propose a sampler for symmetric distributions

Includes . . .
• Ising model
• Potts model

• including colourings

• k Not-all-Equal SAT
• k-spin model for k ≥ 2 even integer

• spin-glass distribution

Remark
The above are for both graphs and hypergraphs

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}

−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

The same idea

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi−1 to generate efficiently σi

Output: σr

vi
ui

Update

vi
ui

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}

• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Approach

The challenge is to define Update, . . . generate σi from σi−1

Setting . . .

• symmetric Gibbs distribution
• . . . e.g. antiferromagnetic Ising, or Potts

• two graphs G and G ′ such that G ′ = G ∪ {e}
• . . . assume that both are of high girth

• Gibbs distributions µ and µ′ on G and G ′, resp.

• configuration σ distributed as in µ

Objective

Generate efficiently τ distributed (approximately) as in µ′

Coupling-Based Solution

Coupling-Based Solution

G

Coupling-Based Solution

G G′

Coupling-Based Solution

G G′

Coupling-Based Solution

G G′

Coupling-Based Solution

G G′

Coupling-Based Solution

G G′

Coupling-Based Solution

G

u w

G′

u w

Coupling-Based Solution

(G, σ)

u w

G′

u w

Coupling-Based Solution

(G, σ)

u w

G′

u w

Coupling-Based Solution

(G, σ)

u w

G′

u w

vertex w is a disagreement with spins {blue, yellow}

Coupling-Based Solution

(G, σ)

u w

G′

u w

iteratively visit each vertex in G ′ and decide its configuration at τ

Coupling-Based Solution

(G, σ)

u w

G′

u w

x1

x2

Priority to z ’s with σ(z) ∈ {blue, yellow}, next to disagreement.

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

pick x2 and decide τ(x2) such that τ(x2) ∈ {blue, yellow}

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

the probability of disagreement is minimised by using coupling
maximally

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

maximal coupling

Pr[τ(x2) = blue] = max
{

0, 1− µ′x2 (σ(x2) | τ({u,w}))
µx2 (σ(x2) | σ({u,w}))

}
.

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

maximal coupling

Pr[τ(x2) = blue] = max
{

0, 1− µ′x2 (σ(x2) | τ({u,w}))
µx2 (σ(x2) | σ({u,w}))

}
.

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

the disagreement set now is {w , x2}

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2

x1

x3

look for vertices z next to the disagreements such that
σ(z) ∈ {blue, yellow}

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

choose x3 and repeat as before . . .

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

Pr[τ(x3) = yellow] = max
{

0, 1− µ′x3 (σ(x3) | τ({u,w ,x2}))
µx3 (σ(x3) | σ({u,w ,x2}))

}
.

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

Coupling-Based Solution

(G, σ)

u w

G′

u w

disagreement cannot propagate any more

Coupling-Based Solution

(G, σ)

u w

G′

u w

the remaining vertices keep the initial assignments.

Coupling-Based Solution

(G, σ)

u w

(G′, τ)

u w

the remaining vertices keep the initial assignments.

Coupling-Based Solution

(G, σ)

u w

(G′, τ)

u w

the approach generates a perfect sample from µ′

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

The catch . . .

Pr[τ(x3) = yellow] = max
{

0, 1− µ′x3 (σ(x3) | τ({u,w ,x2}))
µx3 (σ(x3) | σ({u,w ,x2}))

}
.

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

The catch . . .

we need to compute µx3(σ(x3) | σ({u,w , x2})) efficiently

Coupling-Based Solution

(G, σ)

u w

G′

u w

x2
x3

The idea . . .

replace the Gibbs marginals with “good” approximations that can
be computed efficiently

Some Intuition . . .

Some Intuition . . .

G′

u w

x2
x3

Observation . . .

influences from vertices with fixed configuration make the Gibbs
marginals at x3 too complicated an object

Some Intuition . . .

G′

u w

x2
x3

However . . .

in most cases all but one vertex are far away (girth)

Some Intuition . . .

G′

u w

x2
x3

Choosing the appropriate parameters . . .

essentially only one vertex influences the marginal

Some Intuition . . .

G′

u w

x2
x3

Compute marginal but . . .

ignore the influence on x3 from u and w

Some Intuition . . .

G′

u w

x2
x3

Effectively

use the marginal at x3 on the graph within the dashed curve

Some Intuition . . .

G′

u w

x2
x3

Remark

we can compute the “simplified” marginal at x3 in O(1) steps

To sum up . . .

To sum up . . .

(G, σ)

u w

G′

u w

x2

“maximal coupling”

Pr[τ(x2) = blue] = max
{

0, 1− mx2 (σ(x2) | τ(w))

mx2 (σ(x2) | σ(w))

}

To sum up . . .

(G, σ)

u w

G′

u w

x2

“maximal coupling”

Pr[τ(x2) = blue] = max
{

0, 1− mx2 (σ(x2) | τ(w))

mx2 (σ(x2) | σ(w))

}

To sum up . . .

(G, σ)

u w

G′

u w

x2

the disagreement set is {w , x2}

To sum up . . .

(G, σ)

u w

G′

u w

x2
x3

choose x3 and repeat as before . . .

To sum up . . .

(G, σ)

u w

G′

u w

x2
x3

Pr[τ(x3) = yellow] = max
{

0, 1− mx3 (σ(x3) | τ(x2))
mx3 (σ(x3) | σ(x2))

}
.

To sum up . . .

(G, σ)

u w

G′

u w

x2
x3

To sum up . . .

(G, σ)

u w

G′

u w

x2
x3

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

x2
x3

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

repeat in the same way for the rest of the vertices

To sum up . . .

(G, σ)

u w

G′

u w

when the disagreements cannot propagate any more
the remaining vertices keep the same assignment

To sum up . . .

(G, σ)

u w

(G′, τ)

u w

To sum up . . .

(G, σ)

u w

G′

u w

x2

. . . another catch
disagreements should not

• reach neighbours of the vertex u

• cover all the vertices of a cycle in G ′

To sum up . . .

(G, σ)

u w

(G′, τ)

u w

Otherwise . . .

we have a failure!

Failure Vs Approximation

Failure Vs Approximation

(G, σ)

u w

G′

Failure Vs Approximation

(G, σ)

u w

(G′, τ)

u w

Failure Vs Approximation

(G, σ)

u w

(G′, τ)

u w

If σ ∼ µ(·), then

||µupdate(·)− µ′(·)|| ≤ Pr[Update(σ) Fails]

The iterative algorithm

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The iterative algorithm

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The iterative algorithm

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The `1 error for the algorithm

≈ probability of failure at some iteration

The iterative algorithm

The sampling algorithm

Input: G = (V ,E), Gibbs distribution µ

G0,G1, . . . ,Gr = G

−get Gi from Gi+1 by deleting the random edge {vi , ui}
−G0 is empty

Generate σ0 according to the Gibbs distribution at G0

Iteratively: use σi with Update to generate σi+1

Output: σr

The time complexity

the time complexity is O(|E | × |V |)
• for each iteration we compute O(|V |) marginals

• we have |E | iterations

From high girth to G(n,m)

• we considered high girth graphs
• typical instances of G(n,m) are a bit different

• there are short cycles far apart from each other

• we won’t discuss the challenges from the short cycles here . . .

From high girth to G(n,m)

• we considered high girth graphs

• typical instances of G(n,m) are a bit different

• there are short cycles far apart from each other

• we won’t discuss the challenges from the short cycles here . . .

From high girth to G(n,m)

• we considered high girth graphs
• typical instances of G(n,m) are a bit different

• there are short cycles far apart from each other

• we won’t discuss the challenges from the short cycles here . . .

From high girth to G(n,m)

• we considered high girth graphs
• typical instances of G(n,m) are a bit different

• there are short cycles far apart from each other

• we won’t discuss the challenges from the short cycles here . . .

The parameters

For which parameters of the Gibbs distribution on G(n,m) do we
get good approximations?

• good approximation ⇒ error n−Ω(1)

• need to have local changes in the Update

The parameters

For which parameters of the Gibbs distribution on G(n,m) do we
get good approximations?

• good approximation ⇒ error n−Ω(1)

• need to have local changes in the Update

The parameters

For which parameters of the Gibbs distribution on G(n,m) do we
get good approximations?

• good approximation ⇒ error n−Ω(1)

• need to have local changes in the Update

The parameters

For which parameters of the Gibbs distribution on G(n,m) do we
get good approximations?

• good approximation ⇒ error n−Ω(1)

• need to have local changes in the Update

Gibbs Tree Uniqueness

Gibbs Tree Uniqueness

Gibbs Tree Uniqueness

h

Gibbs Tree Uniqueness

r

h

Gibbs Tree Uniqueness

r

h

Gibbs Tree Uniqueness

r

h

σ(Lh)

Gibbs Tree Uniqueness

r

h

σ(Lh)

lim
h→∞
||µ(·)−µ(· | σ(Lh))||{r}=

{
0
δ > 0

Gibbs Tree Uniqueness

r

h

σ(Lh)

lim
h→∞

||µ(·)−µ(· | σ(Lh))||{r}=
{

0
δ > 0

Gibbs Tree Uniqueness

r

h

σ(Lh)

lim
h→∞

||µ(·)−µ(· | σ(Lh))||{r} =

{
0
δ > 0

Gibbs Tree Uniqueness

r

h

σ(Lh)

lim
h→∞

||µ(·)−µ(· | σ(Lh))||{r} =

{
0
δ > 0

Uniqueness ⇐⇒ ∀σ(Lh) limh→∞ ||µ(·)− µ(· | σ(Lh))||{r} = 0

Use different condition...

• for many distributions here uniqueness is not established

• there are only conjectures

• for hypergraphs uniqueness is too restrictive a condition

• go beyond uniqueness

Use different condition...

• for many distributions here uniqueness is not established
• there are only conjectures

• for hypergraphs uniqueness is too restrictive a condition

• go beyond uniqueness

Use different condition...

• for many distributions here uniqueness is not established
• there are only conjectures

• for hypergraphs uniqueness is too restrictive a condition
• go beyond uniqueness

Influence Condition

Influence Condition

G′

u w

x2
x3

Influence Condition

x3

Influence Condition

x3

max
η,θ
||mx3(· | η)−mx3(· | θ)|| < 1/d

Reconsider the order of randomness

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Planting Colourings

Colors : R,G,B

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Planting Colourings

Colors : R,G,B

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Planting Colourings

Colors : R,G,B

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

• with Influence Cond., the failure probability is very small

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

• with Influence Cond., the failure probability is very small

• . . . this implies small failure probability for the “real process”

Reconsider the order of randomness

Uniform Model
1 random graph G(n,m)

2 randomness of σ

3 choices of Update

Teacher-Student Model
1 generate σ∗

2 graph G∗

3 choices of Update

Update for Teacher-Student

the input of the process is the pair (G∗,σ∗)

• this process is simpler to analyse

• with Influence Cond., the failure probability is very small

• . . . this implies small failure probability for the “real process”

• the above can be true if contiguity holds

Contiguity

Definition
We say that (G,σ) and (G∗,σ∗) are mutual contiguous when
for any property An we have that

lim
n→∞

Pr[(G∗,σ∗) ∈ An] = 0 iff lim
n→∞

Pr[(G,σ) ∈ An] = 0.

Contiguity implies . . .

the two distributions have the same typical properties.

Contiguity

Definition
We say that (G,σ) and (G∗,σ∗) are mutual contiguous when
for any property An we have that

lim
n→∞

Pr[(G∗,σ∗) ∈ An] = 0 iff lim
n→∞

Pr[(G,σ) ∈ An] = 0.

Contiguity implies . . .

the two distributions have the same typical properties.

Contiguity

Definition
We say that (G,σ) and (G∗,σ∗) are mutual contiguous when
for any property An we have that

lim
n→∞

Pr[(G∗,σ∗) ∈ An] = 0 iff lim
n→∞

Pr[(G,σ) ∈ An] = 0.

Contiguity implies . . .

the two distributions have the same typical properties.

Condition 2

Contiguity between the Gibbs distribution and the corresponding
Teacher Student model

Remarks

• Influence Cond. is more restrictive than Contiguity

• Contiguity holds up to “Replica Symmetry Breaking”

• For graphs, Influence Cond. coincides with the (conjectured)
Gibbs Uniqueness
• For hyper-graphs, Influence Cond. gets us beyond uniqueness

• This gets us to “non-reconstruction” region

Remarks

• Influence Cond. is more restrictive than Contiguity
• Contiguity holds up to “Replica Symmetry Breaking”

• For graphs, Influence Cond. coincides with the (conjectured)
Gibbs Uniqueness
• For hyper-graphs, Influence Cond. gets us beyond uniqueness

• This gets us to “non-reconstruction” region

Remarks

• Influence Cond. is more restrictive than Contiguity
• Contiguity holds up to “Replica Symmetry Breaking”

• For graphs, Influence Cond. coincides with the (conjectured)
Gibbs Uniqueness

• For hyper-graphs, Influence Cond. gets us beyond uniqueness

• This gets us to “non-reconstruction” region

Remarks

• Influence Cond. is more restrictive than Contiguity
• Contiguity holds up to “Replica Symmetry Breaking”

• For graphs, Influence Cond. coincides with the (conjectured)
Gibbs Uniqueness
• For hyper-graphs, Influence Cond. gets us beyond uniqueness

• This gets us to “non-reconstruction” region

Concluding Remarks

• Presented a novel approximate sampling algorithm

• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm

• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)

• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1

• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution

• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)

• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters

• for the anti-ferromagnetic distributions it outperform any other
sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses

• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

Concluding Remarks

• Presented a novel approximate sampling algorithm
• underlying graph is G(n,m), or hypergraph Hk(n,m)
• any fixed expected degree d > 1
• works for any symmetric Gibbs distribution
• running time O((n log n)2)
• accuracy n−Ω(1)

• performance in terms of the range of the parameters
• for the anti-ferromagnetic distributions it outperform any other

sampler for G(n,m) or Hk(n,m)

• applies to spin-glasses
• uses concepts from other research areas

• contiguity is a tool developed to study Cavity’s predictions

The end

Thank you!

