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The k-set problem



Halving line problem

e [Simmons, before 1971]: Proposed the problem.
e [Straus] First lower bound.

* [L. Lovasz] On the number of halving lines, Ann. Univ. Sci. Budapest, EGtvO0s,
Sect. Math. 14:107-108, 1971.

* [Edelsbrunner Welzl] Rediscovered in connection with complexity of search

problems in computational geometry. e(4)=3
* P: afinite set of points in R?.
* Halving line of P: a line through two points in P that splits the rest in half. . .

* Halving line problem: Let e(n) ="“the maximum number of halving lines
over sets of n points”. How does e(n) grow?

* As a geometric graph: Halving edge graph ¢ = (V/, E), where V = P and
place an edge between pairs of vertices determining a halving line.

* Assume from now on that point sets are in general position: no three on a
line.

(figure by Jeff Erickson)



A generalization: k-edges and the k-edge
graph

* P: afinite set of points in R?.

* k-edge of P: a pair of points u, v € P such that the line through them
has k points on one side.

* Let e(k,n) ="“the maximum number of k-edges over sets of n points”.
How does e(k,n) grow?

* k-edge graph: ¢ = (V,E) whereV = P and E = {k-edges}.
* Halving edge = “k-edge with k = (n — 2) /2"



A variation: the k-set problem

e P:afinite set of point on the plane.

 k-set of P: a subset of k points that can be
separated from the rest by a line.

* k-set problem: Let a(k,n) =“the maximum
number of k-sets over sets of n points”. How does
a(k,n) grow?

* Proposition: a(k,n) = e(k — 1,n).
Proof idea:

* Take a line that defines a k-set with k = n/2.

* Rotate it clockwise as much as possible without crossing
points.

* This gives a halving edge and is a bijection.




Some bounds for e(n) (max halving lines)

e Asymptotic upper bounds*: .
* 0(n3/?) [Lovasz] Proof soon. 3
« 0(n*’3) [Dey] Proof soon.

* Asymptotic lower bounds:
* (A(nlogn) [Straus] Recursive construction (right).
e n e 21081 [T4th] More complicated recursive construction.

* Conjecture [Erdés Lovasz Simmons Straus]: truth is
close to the lower bound, expect O(n'*€) for all e > 0.

figure from
[Abrego Ferndndez-Merchant Salazar]



Structure of k-edge graph: Convex chains

* Assume n is even and no pair of points with same x
coordinate, w.l.0.g. (rotate if needed).

* For each p € {n/2 leftmost points}:

* Draw a vertical line through p.

* Rotate it counterclockwise around p until it becomes a
halving line. This defines a halving edge (p, q) to the right of

* Continue rotating around g until it becomes a halving line VAN
again. This defines a new halving edge (g, r) to the right of g.

* Continue rotating the line until it becomes vertical again
(180° rotation).

* The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into n/2
convex chains.
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Vertical lines argument: e(n) < 0(n3/?)
[Lovasz]

* Assume no two points have the same x
coordinate w.l.o.g.

e Left to right, draw a vertical line every yn N
points. This is = 4/n lines partitioning
plane.

* Count halving edges as follows:
* Edges within parts:

 Each part contains \yn pomts = < n edges per 7 N
part, \/n parts implies < n3/? edges. .

» Edges across parts:

 Each line crosses each convex chain at most once:
< ny/n edges.

e Total < 2n3/2,




The crossing lemma = e(n) < 0(n*/3) [Dey]

Explicit “topological” aspect: crossing lemma.

Crossing: an intersecting pair of edges in a geometric graph
(intersection not at endpoints).

Lemma ( Crossm7 lemma): Draw a Eraph G = (V,E) onthe

Flane If |E| > 4[V], then the number of crossmgs is at least
E|°/64|V]?.

Thm]JDey] e(n) < 0(n*3).

Proof idea:

* Claim: The halving edge graph has < n?/2 crossings (using
addltlonal ideas by [Har-Peled]). Proof:

Consider separately convex chain decomposition and concave chain
decomposition.

* Count every crossing of edges (e, f) as e in a convex chainand f ina
concave chain.
But a convex chain and a concave chain can cross at rg'uost twice.
= number of crossings is at most 2 (n/2)(n/2) = n“/2.

* Crossing lemma = crossings > |E|3/64n? = |E| < 0(n*/3).



Proof of crossing lemma: random sampling

ra hG é on the plane. If |E| > 4|V|, then the number of crossings is at
ast E|3/ 4(v
Proof idea:

* Draw (G on the plane with v vertices, e edges and ¢ crossings.

e Basic bound:c = e — 3v.

* Euler’s formula = a planar graph with v’ vertices and e’ edges satlsfles e < 3v.
Starting from G, repeatedly “remove one edge from a crossing” until there are no crossings,
resulting in v’ = v vertices and e’ edges.
We have e’ >e—c:>e—c<e <3v=c=e—3v.

* “Amplify” bound by applying it to a random subgraph of G:

* Pick each vertex with probability p. E(#vertices) = pv, E(#edges) = p?e, E(#crossings) =

* Basic bound gives p*c > p%e — 3pv.

 Take p = 4v/e (say, optimize over p) to get ¢ = e3/64v2.

Lemma (Crossmélemma) FA jtai Chvatal Newborn Szemerédi] [Leighton]: Draw a



The d-dimensional case

* P: afinite set of points in R? in general linear
p05|t|onéany d + 1 or fewer are affinely
Independent).

. halvmg facet: d points that determine a
yﬁcerplane (and simplex) that splits the rest in

 k-facet: d points that determine a hyperplane (and
simplex) that has k points on one side.

* Some known bounds on max # of halving facets:
. O(nd) (clearly)

* 0(n? Ed? where €; = 1/d® [Alon Barany Fiiredi
Kleltman }I

’wa IorfuITverbergtheorem
e n4 (Vlogn) [seidel]



|II

“Topological” aspect: colorful Tverberg

theorem

 Thm [Radon]: Any set of at least d + 2 points in
R? has a partition into parts Py, P, so that
conv(P;) N conv(P,) + @.

* Thm [Tverberg]: Radon but partition into r parts,
different bound.

* Thm (Colorful Tverberg) [Barany Fiiredi Lovasz]
[Zivaljevié¢ Vreéica]: Tverberg but points are
colored with t colors and the r subsets are
disjoint (not a partition) and each subset picks Q
one point from each color. Different bound.




Problem easier for special point sets? ..

* Points in convex position in R?? Yes, always n/2 (“diagonals of a polygon”,
exact count!).

* Points in convex position in R3? Yes, always (n — 1)#/4 (see below).

* Points in convex position in R%? Unknown. But some improvement beyond
general case possible, later.

* “Correct” generalization of convex position from R?, R3 to R%: neighborly
point sets.
« Def: A finite set of points P in R% is neighborly if every subset of |d/2] or less

points of P determines a face of conv(P) (has a supporting hyperplane containing

exactly those points). Every 1,2 and 3
* If P has > d + 1 points, then “|d/2]” is largest possible by Radon’s theorem. points form a face
* By Upper Bound Theorem/Dehn-Sommervile equations: P is neighborly (and in
eneral position) = # of facets of conv(P) is determined by n and d. Explicit Not every 2 points
ormula. form a face

* Note that a facet is a k-facet for k = 0.

 Random sami)ling alpe technique from [Clarkson Shor]: d =3,
P is neighborly (and in general position) = # of k-facets of P is determined by n, k |d/2] =1 RN
and d. Explicit formula [Andrzejak Welzl] [Wagner]. '



Application of random sampling technique
[Clarkson Shor]

Prop: P is neighborly (and in general position? = # of k-facets of P is determined
by n, k and d. Explicit formula [Andrzejak Welzl] [Wagner].

Proof idea:
» Subsets of neighborly point sets are neighborly.

* By previous theorem, # of facets of every subset of P is determined by its # of
points and d.

* Let O be P with a random point removed.
Let R € P be afixed 1-facet of P. P(R is afacet of Q) = 1/n.
Let S € P be a fixed facet of P. P(Sisafacetof Q) = (n — d)/n.

 E(# of facets of Q) = Z (# of 1—facets of P) + n-d (# of facets of P).
n n

* This determines # of 1-facets of P.
* Similar argument for # of 2-facets of P, # of 3-facets of P, etc.



The k-set problem: general
shapes and random point sets



The k-set problem for general set systems

* Halving line problem: asymptotics of max # of pairs of points
determining a line that splits the rest in half.

* General set systems version: replace lines by another family
of shapes determined by a fixed small number of points.

* Example:
Thm [Lee] [Ardila]: Let P € R? be a finite set of 2n + 1
points in general position (no 4 on a circle, no 3 on a line).
Then the # of ways in which a circle going through 3 points

splits the rest in half is n®.

 Circles problem is easier than lines: exact count. (like
neighborly point set case). Any set of n points in general
position has the same count.



Exact count for circles

* Thm [Lee] [Ardila]: Let P € R? be a finite set of
2n + 1 points in general position (no 4 on a
circle, no 3 on a line). Then the # of ways in
which a circle %oing through 3 points splits the
rest in half is n“.

* Proof idea:
* Map points to R3: (x,y) = (x,y,x% + y?).
 Mapped set of points is in convex=neighborly
position.

« Convex position because map embeds R as a
paraboloid, a strictly convex surface.

 Neighborly because convex=neighborly position in R3.
* Halving facet in R® < halving circle in R%. Namely,
Ax +By+Cz=D o Ax+By+ C(x* +y%) =D
» Use exact count of halving facets for neighborly.




Our results: Exact count for conic sections

* Want: replace halving lines by “halving conic sections.” (conic section=set in
R? satisfying Ax? + Bxy + Cy? + Dx + Ey + F = 0, generically a parabola,
hyperbola or ellipse)

* How? Idea: set systems/shapes/surfaces induced by maps.
* Map @:R? = R>, (x,y) = (x%,xy,y%,x,¥).
Then a hyperplane {v € R°:a-v= b} induces 3 regions in R?:

* a-@(x,y)<b,
* a-@(x,y) > band
* a “boundary/surface” a - @(x,y) = b.

* “Boundary” is a conic section.

* Def fHaIving conic section of P C RZL: set of 5 points S of P such that ¢(S5) ise
a halving facet (determines a halving hyperplane) of ¢ (P) in R>.

« Thm [our work]: Any set of n points in R? in general position has (n —
1)?(n — 3)?/64 halving conic sections.




Our results: Exact count for conic sections

* Thm [our work]: Any set of nfoints in R? in general
position has (n — 1)?(n — 3)%/64 halving conic
sections.

Proof idea:

« Map points to R”: (x,y) = (x2,xy,v%,x,y).

* Proposition (mapped set of points is in neighborly position):

Assume a finite set of points S € R? is in general linear
position. Then @(S) is neighborly.
Proof: Let u, v € S. We need to find a conic section inequality
“passing” though those two points and with all other points on
one side. Use line ax + by = ¢ through u and v. The desired
inequality is (ax + by — ¢)? < 0.

* Halving facet in R® © halving conic section in RZ.

* Use exact count of halving facets for neighborly point sets.




Our results: Exact count for some polynomial
families (even degree homogeneous)

* Thm (neighborly) [our work]: If m is even and S S R? is in general position (no two
points on a common line through the origin), then the image of S through the map of all
monomials of degree m is neighborly.

Proof idea: Like for conic sections, find support hyperplanes by constructing explicit
polynomials.

* Thm (exact count) [our work]: Assume m is even. Any set of 2n + m + 1 points of R? in
general E)os'tion with respect to degree m homogeneous polynomials has exactly
2 (‘k”';/ Ql_k;{?z/z_lj “degree m homogeneous polynomials”-k-facets.
Proo’?léea: ike conic séctions.

* Why does m need to be even? # of monomials in map ¢ ism + 1.
If m odd, # of monomials in map @ is even (and vice-versa) = embedding dimension is
even
= nei%hborliness is “stronger” requirement ([d/ZJ).
E.g. “all pairs of points are a face” in R* and same “with more room” in R>, not stronger.
Does not work.



Our results: Neighborliness and improved
bounds for other polynomial families in R4

Def: Finite P € RP is k-nejlg'hborly if every subset of k or less points of P determines a face of conv(P).

n__u

Example: “neighborly in R*” = “2-neighborly”, while “1-neighborly”=“convex position.”

d+m
Thm [our work] (neighborliness for degree < m polynomials). ¢: R% — R( m )_1 : all monomials of degree < m.
d+m/2) _ 1r>—neighborly.

S € R%: afinite set such that @(S) is in general linear position. Then @(S) is ( m/2 )

» Example d=4, m=2: embedding is 4-neighborly in R'*. Not neighborly (=7-neighborly) = no exact count of k-facets via our argument.

Thm [our work]: S € R% is a set of n points in convex position = “# k-facets of $”< g “max # k-facets in R4~ forn — 1 points.”

Proof idea: stereographic projection.
Example: Best known bound for halving facets in R® is 0(n%/?), in R*is 0(n*~2/%5), Our thm gives 0(n”/?) for points in convex position

in R

Thm [our work]: Like last theorem but assuming m-neighborly and giving better bound.
d+m
Can use general upper bounds on # of halving facets in R( m )_1 to get upper bounds on # of halving polynomials of degree < m.

Thms above can be combined to get better than general bounds on # of halving polynomials of degree < m.

Similar results for homogeneous polynomials.



Limits of neighborliness argument: neighborly
embeddings

* Our mapping @: R% — RP induces a d-manifold in R?.

e Def g(-negghborly embedding of a manifold): A d-manifold M embedded into RP is k-neighborly if for every
k-subset S € M there is a hyperplane H that contains S and the rest of M is on one open side of H. Also
neighborIy=Lp/2J—neighborIy.

Examples: The moment curve x = (x,xz, ..., XP) is neighborly.
Image of map (x,y) — (x4, x?/,yz,x, y) is 1-neighborly. (Proof: a tiny empty circle passing through point)
Not 2-neighborly. (Proof: 3 collinear points + other points)

* Problem of whether a map embeds points in neighborly position relates to a problem of Micha Perles:
Open problem [Perles]: What is the smallest dimension p(k, d) of the ambient space in which a k-
neighborly d-dimensional manifold exists?

» [Kalai Wigderson] k(d + 1) < p(k,d) < 2k(k — 1)d

* Def (generally k-neighborly manifold): {n—tuples of points that are k—neighborly} € R™ contains an
open and dense set Vn.
Example: Image of map (x,y) = (x2,xy,y?,x,7y) is generally 2-neighborly (our result).

* In our case:
Open problem [our work]: What is the smallest dimension p, (k,d) of the ambient space in which a
generally k-neighborly d-dimensional manifold exists?

* Our conjecture: p,(k,d) = 2k+d —1.



Limits of neighborliness argument: neighborly
embeddings

* In our case:
Open problem [our work]: What is the smallest dimension p,(k, d) of the
ambient space in which a generally k-neighborly d-dimensional manifold
exists?

* Our conjecture: p,(k,d) = 2k +d — 1.

* Our results:
* pglk,d) < 2k +d—1.
* If “manifold” replaced by “algebraic variety,” then p,(k,d) = 2k + d — 1.

* If our conjecture is true then exact counting via embeddings is not possible in R% for
d = 3.
Proof for d = 3: R embeds into RP with p = 2k + 2, which implies k < [p/2].
Same argument for larger d.




Expected number of k-facets

Suppose S is an iid random sample of n points according to some distribution P in R.
What is Ep(n) = E(# of halving facets of 5)?
What is E,I; k,n) = E(# of k—facets of §)?

Assume measure via P of every hyperplane is 0. Implies general position of S a.s.
[Barany Steiger]

« Ep(n) = 0(n% 1) if P is spherically symmetric.
« Ep(n) = 0(n) if P is uniform in a convex body in R?,

[Clarkson] Ep(n) = 0(n%~1)if P is coordinate-wise independent.
This is some evidence for belief that lower bound is closer to truth in k-set problem.

What about more general distributions?

* Note that there exist P in R? such that Ep(n) = ne®W1081) (j.e. same as best lower bound for
non-random).

* Itis believed growth of Ep(n) can be as fast as deterministic case, but this is open.



Expected number of k-facets. Our results.

« Thm: If u is a probability distribution on R? such that the measure of every hyperplane is O, then E,(n) =
0(n%1/2) (compare with best known deterministic “O(n¢~%¢" )”)

Proof idea (follows from idea of [Barany Steiger]): In R? for points X, ..., X,, according to u,

E (# of halving edges)
n
= (2) P(X,_1, Xy is a halving line)

n n—2
- (2> m-2)2)" (X1, -, X(n-2)/2 below aff(X,,_;, Xp,), rest above)

o n-2
— En))(<(nn _2)§/Z> j {l(bQIOW aff(xn—L xn))TZ (1 _ /,t(below aff(xn—llxn))}) ‘ d'u(xn_l)d'u(xn)
n |
(n—-2)/2 “ ”

= 0(n3/2)



Expected number of k-facets. Our results.

* Thm: For any probabilitx/P on R? such that the measure of every line is 0,
Er(k,n) < 10n(k + 1)1/*
(compare with best known deterministic, 0 (nk/3) [Dey]).
Proof idea:
e Use vertical lines equipartition on P (not on the points).
e Use argument in previous theorem to bound k-edges within parts.
* Use convex chains to bound k-edges across parts.

* Anidea: replace vertical lines partitioning by polynomial partitioning.
Open problem: What is the maximum (finite) # of times that an irreducible
non-singular degree r algebraic curve can intersect the k-edge graph of a
set of n points in the plane?

We prove between nr and nr?. If true is nr, we can improve our bound on

Ep(k,n).



Expected number of k-facets. Our results.

* The argument we use from [Barany Steiger] gives morally
0 (n(#d.of of shapes)=1/2) hoynd for k-sets. How loose is

this?

* [Our result] If we allow shapes beyond
hyperplanes/halfspaces, it is tight:
For certain distributions on R? and translations of any
fixed strictly convex curve (two d.o.f.),
E (# of induced k—sets on n random points) = 0(n3/?)
(up to polylog factors).



Expected number of k-facets of random
Gaussian point sets in R%

¢S ={Xy, ..., X, }: iid random Gaussian sample of n points in R%.
P = conv(S).
» E(# of facets of P)?

* For fixed d and as n — oo, well studied. [Raynaud] [Rényi Sulanke] give precise

asymptotics.
* Both d and n grow? Particularly, proportional regime n = cd (relevant for
applications).
* [Vershik Sporyshev] [Donoho Tanner] In proportional regime: degree of neighborliness of
P and indirect information about # of facets of P.
 [Boroczky Lugosi Reitzner] n = e®d orn — d = o(d). In proportional regime, provides
exponential upper and lower bounds.



Expected number of k-facets of random
(Gaussian point sets In R%: our results.

S = {X4, ..., X,,}: iid random Gaussian sample of n points in R%. P = conv(S).

* Thm [ourwork]: Ifn/d - ¢ > 1landk/(n—d) —» r € [0,1], then _ _ _
E (# of k—facets ofS/) = C%Jro(“]l) with an easy way to de[terr]nine C. d=3n=71k=2

* Example: If n = 2d and k = 0 (facets), then C = 4v2m max ®(y)P'(y) = 2.44,

. €R X
where @ is CDF of N(0,1). Y X7 .5
. L
* Proof idea: ® e
. Extebrlld formula in [Hug Munsonius Reitzner] from facets to k-facets to get equivalent 1-dim 6
problem: O
Thm [our work]: P(Xy, ..., X; is a k—facet of §) = P6Y is k+1stlargest or k415t smallest X
in{Y,Y;,..,Yn_aq}), where ¢~N(0,1/d? and Y;~N(0,1) and all are independent. 4
Proof idea: Project onto line perpendicular to ayff(Xl, ..., X4) and determine distributions of
projected random variables.
—d\ Vd oo n-d-k _v°
* Write then P(Xy, ..., Xq is a k—facet of ) = 2(™, )Ef-oo oMk (1 - d(y)) ez dy
% _dy?
* E.g.forn = 2d, k = 0 (facet): P(Xy, ..., X4 is a facet of §) = ZEI (1—d()%e 2 dy
V2m Y- ® o0

* Use the following “easy” asymptotic expansion of integral: fRd f(x)Pdx = ||f||’§o+0(”) asp — oo,
Proof: Start with “LP norm of function converges to L* norm as p — oo” under mild assumptions, Y Y, T3
then raise to pth power.
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