The k-set problem: general shapes and random point sets

Luis Rademacher

UC Davis

Joint work with Brett Leroux

The k-set problem

Halving line problem

- [Simmons, before 1971]: Proposed the problem.
- [Straus] First lower bound.
- [L. Lovász] On the number of halving lines, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 14:107-108, 1971.
- [Edelsbrunner Welzl] Rediscovered in connection with complexity of search problems in computational geometry.
- *P*: a finite set of points in R^2 .
- Halving line of *P*: a line through two points in *P* that splits the rest in half.
- Halving line problem: Let e(n) = "the maximum number of halving lines over sets of n points". How does e(n) grow?
- As a geometric graph: Halving edge graph G = (V, E), where V = P and place an edge between pairs of vertices determining a halving line.
- Assume from now on that point sets are in general position: no three on a line.

(figure by Jeff Erickson)

A generalization: k-edges and the k-edge graph

- P: a finite set of points in \mathbb{R}^2 .
- k-edge of P: a pair of points u, v ∈ P such that the line through them has k points on one side.
- Let e(k, n) = "the maximum number of k-edges over sets of n points".
 How does e(k, n) grow?
- k-edge graph: G = (V, E) where V = P and $E = \{k-edges\}$.
- Halving edge = "k-edge with k = (n 2)/2."

A variation: the k-set problem

- *P*: a finite set of point on the plane.
- **k-set of** *P*: a subset of *k* points that can be separated from the rest by a line.
- k-set problem: Let a(k, n) = "the maximum number of k-sets over sets of n points". How does a(k, n) grow?
- Proposition: a(k,n) = e(k-1,n). Proof idea:
 - Take a line that defines a k-set with k = n/2.
 - Rotate it clockwise as much as possible without crossing points.
 - This gives a halving edge and is a bijection.

k = 2, n = 4

Some bounds for e(n) (max halving lines)

- Asymptotic upper bounds*:
 - $O(n^{3/2})$ [Lovász] Proof soon.
 - $O(n^{4/3})$ [Dey] Proof soon.
- Asymptotic lower bounds:
 - $\Omega(n \log n)$ [Straus] Recursive construction (right).
 - $n e^{\Omega(\sqrt{\log n})}$ [Tóth] More complicated recursive construction.
- Conjecture [Erdős Lovász Simmons Straus]: truth is close to the lower bound, expect $O(n^{1+\epsilon})$ for all $\epsilon > 0$.

figure from [Ábrego Fernández-Merchant Salazar]

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

n = 14

p

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This partitions all halving edges into n/2 convex chains.

- Assume *n* is even and no pair of points with same *x* coordinate, w.l.o.g. (rotate if needed).
- For each $p \in \{n/2 \text{ leftmost points}\}$:
 - Draw a vertical line through p.
 - Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p,q) to the right of p.
 - Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
 - Continue rotating the line until it becomes vertical again (180° rotation).
 - The union of the picked halving edges is a **convex chain**.

Thm [Dey]: This **partitions** all halving edges into n/2 convex chains.

Vertical lines argument: $e(n) \leq O(n^{3/2})$ [Lovász]

- Assume no two points have the same x coordinate w.l.o.g.
- Left to right, draw a vertical line every \sqrt{n} points. This is $\approx \sqrt{n}$ lines partitioning plane.
- Count halving edges as follows:
 - Edges within parts:
 - Each part contains \sqrt{n} points $\Rightarrow \le n$ edges per part, \sqrt{n} parts implies $\le n^{3/2}$ edges.
 - Edges across parts:
 - Each line crosses each convex chain at most once: $\leq n\sqrt{n}$ edges.
 - Total $\leq 2n^{3/2}$.

The crossing lemma $\Rightarrow e(n) \leq O(n^{4/3})$ [Dey]

- Explicit "topological" aspect: crossing lemma.
- **Crossing**: an intersecting pair of edges in a geometric graph (intersection not at endpoints).
- Lemma (Crossing lemma): Draw a graph G = (V, E) on the plane. If |E| > 4|V|, then the number of crossings is at least $|E|^3/64|V|^2$.
- Thm [Dey]: $e(n) \le O(n^{4/3})$. Proof idea:
 - Claim: The halving edge graph has $\leq n^2/2$ crossings (using additional ideas by [Har-Peled]). Proof:
 - Consider separately convex chain decomposition and concave chain decomposition.
 - Count every crossing of edges (e, f) as e in a convex chain and f in a concave chain. But a convex chain and a concave chain can cross at most twice. ⇒ number of crossings is at most 2 (n/2)(n/2) = n²/2.
 - Crossing lemma \Rightarrow crossings $\ge |E|^3/64n^2 \Rightarrow |E| \le O(n^{4/3})$.

Proof of crossing lemma: random sampling

Lemma (Crossing lemma) [Ajtai Chvátal Newborn Szemerédi] [Leighton]: Draw a graph G = (V, E) on the plane. If |E| > 4|V|, then the number of crossings is at least $|E|^3/64|V|^2$. Proof idea:

- Draw G on the plane with v vertices, e edges and c crossings.
- Basic bound: $c \ge e 3v$.
 - Euler's formula \Rightarrow a planar graph with v' vertices and e' edges satisfies $e' \leq 3v'$. Starting from G, repeatedly "remove one edge from a crossing" until there are no crossings, resulting in v' = v vertices and e' edges. We have $e' \geq e - c \Rightarrow e - c \leq e' \leq 3v' \Rightarrow c \geq e - 3v$.
- "Amplify" bound by applying it to a **random subgraph** of G:
 - Pick each vertex with probability p. E(#vertices) = pv, E(#edges) = p^2e , E(#crossings) = p^4c .
 - Basic bound gives $p^4c \ge p^2e 3pv$.
 - Take p = 4v/e (say, optimize over p) to get $c \ge e^3/64v^2$.

The d-dimensional case

- P: a finite set of points in R^d in general linear position (any d + 1 or fewer are affinely independent).
- halving facet: d points that determine a hyperplane (and simplex) that splits the rest in half.
- k-facet: d points that determine a hyperplane (and simplex) that has k points on one side.
- Some known bounds on max # of halving facets:
 - $O(n^d)$ (clearly)
 - $O(n^{d-\epsilon_d})$ where $\epsilon_d \approx 1/d^d$ [Alon Bárány Füredi Kleitman] (via colorful Tverberg theorem)
 - $n^{d-1} e^{\Omega(\sqrt{\log n})}$ [Seidel]

d = 3, n = 7, k = 2

"Topological" aspect: colorful Tverberg theorem

- Thm [Radon]: Any set of at least d + 2 points in R^d has a partition into parts P_1, P_2 so that $\operatorname{conv}(P_1) \cap \operatorname{conv}(P_2) \neq \emptyset$.
- Thm [Tverberg]: Radon but partition into r parts, different bound.
- Thm (Colorful Tverberg) [Bárány Füredi Lovász] [Živaljević Vrećica]: Tverberg but points are colored with t colors and the r subsets are disjoint (not a partition) and each subset picks one point from each color. Different bound.

Problem easier for special point sets?

- Points in convex position in \mathbb{R}^2 ? Yes, **always** n/2 ("diagonals of a polygon", exact count!).
- Points in convex position in R^3 ? Yes, **always** $(n-1)^2/4$ (see below).
- Points in convex position in \mathbb{R}^d ? Unknown. But some improvement beyond general case possible, later.
- "Correct" generalization of convex position from R², R³ to R^d: neighborly point sets.
 - **Def:** A finite set of points P in R^d is **neighborly** if every subset of $\lfloor d/2 \rfloor$ or less points of P determines a face of conv(P) (has a supporting hyperplane containing exactly those points).
 - If P has > d + 1 points, then " $\lfloor d/2 \rfloor$ " is largest possible by Radon's theorem.
 - By Upper Bound Theorem/Dehn-Sommervile equations: P is neighborly (and in general position) ⇒ # of facets of conv(P) is determined by n and d. Explicit formula.
 - Note that a facet is a k-facet for k = 0.
 - Random sampling type technique from [Clarkson Shor]: *P* is neighborly (and in general position) \Rightarrow # of k-facets of *P* is **determined** by *n*, *k* and *d*. Explicit formula [Andrzejak Welzl] [Wagner].

Every 1,2 and 3 points form a face

Not every 2 points form a face

Application of random sampling technique [Clarkson Shor]

Prop: *P* is neighborly (and in general position) \Rightarrow # of k-facets of *P* is **determined** by *n*, *k* and *d*. Explicit formula [Andrzejak Welzl] [Wagner]. Proof idea:

- Subsets of neighborly point sets are neighborly.
- By previous theorem, # of facets of every subset of P is determined by its # of points and d.
- Let Q be P with a random point removed. Let $R \subseteq P$ be a fixed 1-facet of P. P(R is a facet of Q) = 1/n. Let $S \subseteq P$ be a fixed facet of P. P(S is a facet of Q) = (n - d)/n.
- $E(\# \text{ of facets of } Q) = \frac{1}{n} (\# \text{ of } 1 \text{facets of } P) + \frac{n-d}{n} (\# \text{ of facets of } P).$
- This determines # of 1-facets of *P*.
- Similar argument for # of 2-facets of P, # of 3-facets of P, etc.

The k-set problem: general shapes and random point sets

The k-set problem for general set systems

- Halving line problem: asymptotics of max # of pairs of points determining a line that splits the rest in half.
- General set systems version: replace lines by another family of shapes determined by a fixed small number of points.
- Example:

Thm [Lee] [Ardila]: Let $P \subseteq R^2$ be a finite set of 2n + 1 points in general position (no 4 on a circle, no 3 on a line). Then the # of ways in which a circle going through 3 points splits the rest in half is n^2 .

 Circles problem is easier than lines: exact count. (like neighborly point set case). Any set of n points in general position has the same count.

Exact count for circles

- Thm [Lee] [Ardila]: Let $P \subseteq R^2$ be a finite set of 2n + 1 points in general position (no 4 on a circle, no 3 on a line). Then the # of ways in which a circle going through 3 points splits the rest in half is n^2 .
- Proof idea:
 - Map points to R^3 : $(x, y) \mapsto (x, y, x^2 + y^2)$.
 - Mapped set of points is in convex=neighborly position.
 - Convex position because map embeds R^2 as a paraboloid, a strictly convex surface.
 - Neighborly because convex=neighborly position in R^3 .
 - Halving facet in $R^3 \leftrightarrow$ halving circle in R^2 . Namely, $Ax + By + Cz = D \leftrightarrow Ax + By + C(x^2 + y^2) = D$
 - Use exact count of halving facets for neighborly.

Our results: Exact count for conic sections

- Want: replace halving lines by "halving conic sections." (conic section=set in R^2 satisfying $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, generically a parabola, hyperbola or ellipse)
- How? Idea: set systems/shapes/surfaces induced by maps.
- Map $\varphi: \mathbb{R}^2 \to \mathbb{R}^5$, $\varphi(x, y) = (x^2, xy, y^2, x, y)$. Then a hyperplane $\{v \in \mathbb{R}^5 : a \cdot v = b\}$ induces 3 regions in \mathbb{R}^2 :
 - $a \cdot \varphi(x, y) < b$,
 - $a \cdot \varphi(x, y) > b$ and
 - a "boundary/surface" $a \cdot \varphi(x, y) = b$.
- "Boundary" is a conic section.
- **Def (Halving conic section of** $P \subseteq \mathbb{R}^2$): set of 5 points *S* of *P* such that $\varphi(S)$ is \bullet a halving facet (determines a halving hyperplane) of $\varphi(P)$ in \mathbb{R}^5 .
- Thm [our work]: Any set of n points in R^2 in general position has $(n 1)^2(n 3)^2/64$ halving conic sections.

Our results: Exact count for conic sections

- Thm [our work]: Any set of n points in R^2 in general position has $(n 1)^2(n 3)^2/64$ halving conic sections. Proof idea:
 - Map points to R^5 : $(x, y) \mapsto (x^2, xy, y^2, x, y)$.
 - **Proposition (mapped set of points is in neighborly position):** Assume a finite set of points $S \subseteq R^2$ is in general linear position. Then $\varphi(S)$ is neighborly. Proof: Let $u, v \in S$. We need to find a conic section inequality "passing" though those two points and with all other points on one side. Use line ax + by = c through u and v. The desired inequality is $(ax + by - c)^2 \leq 0$.
 - Halving facet in $R^5 \leftrightarrow$ halving conic section in R^2 .
 - Use exact count of halving facets for neighborly point sets.

Our results: Exact count for some polynomial families (even degree homogeneous)

- Thm (neighborly) [our work]: If m is even and $S \subseteq R^2$ is in general position (no two points on a common line through the origin), then the image of S through the map of all monomials of degree m is neighborly. Proof idea: Like for conic sections, find support hyperplanes by constructing explicit polynomials.
- Thm (exact count) [our work]: Assume m is even. Any set of 2n + m + 1 points of R^2 in general position with respect to degree m homogeneous polynomials has exactly $2\binom{k+m/2}{m/2}\binom{n-k-m/2-1}{m/2}$ "degree m homogeneous polynomials"-k-facets. Proof idea: Like conic sections.
- Why does *m* need to be even? # of monomials in map φ is m + 1. If *m* odd, # of monomials in map φ is even (and vice-versa) \Rightarrow embedding dimension is even

⇒ neighborliness is "stronger" requirement ($\lfloor d/2 \rfloor$). E.g. "all pairs of points are a face" in R^4 and same "with more room" in R^5 , not stronger. Does not work.

Our results: Neighborliness and improved bounds for other polynomial families in R^d

- **Def:** Finite $P \subseteq R^p$ is *k***-neighborly** if every subset of *k* or less points of *P* determines a face of conv(*P*). Example: "neighborly in R^{4n} = "2-neighborly", while "1-neighborly"="convex position."
- Thm [our work] (neighborliness for degree $\leq m$ polynomials). $\varphi: \mathbb{R}^d \to \mathbb{R}^{\binom{d+m}{m}-1}$: all monomials of degree $\leq m$. $S \subseteq \mathbb{R}^d$: a finite set such that $\varphi(S)$ is in general linear position. Then $\varphi(S)$ is $\binom{d+m/2}{m/2} - 1$ -neighborly.
 - Example d=4, m=2: embedding is 4-neighborly in R^{14} . Not neighborly (=7-neighborly) \Rightarrow no exact count of k-facets via our argument.
- Thm [our work]: $S \subseteq \mathbb{R}^d$ is a set of n points in convex position \Rightarrow "# k-facets of $S'' \leq \frac{n}{d}$ "max # k-facets in \mathbb{R}^{d-1} for n-1 points." Proof idea: stereographic projection. Example: Best known bound for halving facets in \mathbb{R}^3 is $O(n^{5/2})$, in \mathbb{R}^4 is $O(n^{4-2/45})$. Our thm gives $O(n^{7/2})$ for points in convex position in \mathbb{R}^4
- Thm [our work]: Like last theorem but assuming m-neighborly and giving better bound.
- Can use general upper bounds on # of halving facets in $R^{\binom{d+m}{m}-1}$ to get upper bounds on # of halving polynomials of degree $\leq m$.
- Thms above can be combined to get better than general bounds on # of halving polynomials of degree $\leq m$.
- Similar results for homogeneous polynomials.

Limits of neighborliness argument: neighborly embeddings

- Our mapping $\varphi: \mathbb{R}^d \to \mathbb{R}^p$ induces a *d*-manifold in \mathbb{R}^p .
- **Def (k-neighborly embedding of a manifold)**: A *d*-manifold *M* embedded into R^p is *k*-neighborly if for every *k*-subset $S \subseteq M$ there is a hyperplane *H* that contains *S* and the rest of *M* is on one open side of *H*. Also neighborly= $\lfloor p/2 \rfloor$ -neighborly. Examples: The moment curve $x \mapsto (x, x^2, ..., x^p)$ is neighborly. Image of map $(x, y) \mapsto (x^2, xy, y^2, x, y)$ is 1-neighborly. (Proof: a tiny empty circle passing through point) Not 2-neighborly. (Proof: 3 collinear points + other points)
- Problem of whether a map embeds points in neighborly position relates to a problem of Micha Perles: **Open problem [Perles]**: What is the smallest dimension p(k, d) of the ambient space in which a kneighborly d-dimensional manifold exists?
 - [Kalai Wigderson] $k(d+1) \le p(k,d) \le 2k(k-1)d$
- **Def (generally k-neighborly manifold)**: $\{n-\text{tuples of points that are } k-\text{neighborly}\} \subseteq \mathbb{R}^{np}$ contains an open and dense set $\forall n$. Example: Image of map $(x, y) \mapsto (x^2, xy, y^2, x, y)$ is generally 2-neighborly (our result).
- In our case:
 Open problem [our work]: What is the smallest dimension p_g(k, d) of the ambient space in which a generally k-neighborly d-dimensional manifold exists?
- Our conjecture: $p_g(k, d) = 2k + d 1$.

Limits of neighborliness argument: neighborly embeddings

• In our case:

Open problem [our work]: What is the smallest dimension $p_g(k, d)$ of the ambient space in which a generally k-neighborly d-dimensional manifold exists?

- Our conjecture: $p_g(k, d) = 2k + d 1$.
- Our results:
 - $p_g(k,d) \le 2k + d 1.$
 - If "manifold" replaced by "algebraic variety," then $p_g(k, d) = 2k + d 1$.
 - If our conjecture is true then exact counting via embeddings is not possible in \mathbb{R}^d for $d \ge 3$. Proof for d = 3: \mathbb{R}^3 embeds into \mathbb{R}^p with $p \ge 2k + 2$, which implies $k < \lfloor p/2 \rfloor$.

Same argument for larger d.

Expected number of k-facets

- Suppose S is an iid random sample of n points according to some distribution P in \mathbb{R}^d . What is $E_P(n) = E(\# \text{ of halving facets of } S)$? What is $E_P(k,n) = E(\# \text{ of } k-\text{facets of } S)$?
- Assume measure via *P* of every hyperplane is 0. Implies general position of *S* a.s.
- [Bárány Steiger]
 - $E_P(n) = O(n^{d-1})$ if P is spherically symmetric.
 - $E_P(n) = O(n)$ if P is uniform in a convex body in R^2 .
- [Clarkson] $E_P(n) = O(n^{d-1})$ if P is coordinate-wise independent.
- This is some evidence for belief that lower bound is closer to truth in k-set problem.
- What about more general distributions?
 - Note that there exist P in \mathbb{R}^2 such that $E_P(n) = ne^{\Omega(\sqrt{\log n})}$ (i.e. same as best lower bound for non-random).
 - It is believed growth of $E_P(n)$ can be as fast as deterministic case, but this is open.

Expected number of k-facets. Our results.

• Thm: If μ is a probability distribution on \mathbb{R}^d such that the measure of every hyperplane is 0, then $E_{\mu}(n) = O(n^{d-1/2})$ (compare with best known deterministic " $O(n^{d-d^{-d}})$ ").

Proof idea (follows from idea of [Bárány Steiger]): In R^2 for points $X_1, ..., X_n$ according to μ ,

$$E(\# \text{ of halving edges}) = \binom{n}{2} P(X_{n-1}, X_n \text{ is a halving line}) = \binom{n}{2} \binom{n-2}{(n-2)/2} P(X_1, \dots, X_{(n-2)/2} \text{ below aff}(X_{n-1}, X_n), \text{ rest above}) = \binom{n}{2} \binom{n-2}{(n-2)/2} \int \mu(\text{below aff}(x_{n-1}, x_n))^{\frac{n-2}{2}} (1 - \mu(\text{below aff}(x_{n-1}, x_n)))^{\frac{n-2}{2}} d\mu(x_{n-1}) d\mu(x_n) \\ \leq \frac{\binom{n}{2}\binom{n-2}{(n-2)/2}}{4^{(n-2)/2}} \qquad "t(1-t) \leq 1/4" \\ = O(n^{3/2}).$$

Expected number of k-facets. Our results.

- Thm: For any probability P on R^2 such that the measure of every line is 0, $E_P(k,n) \leq 10n(k+1)^{1/4}$ (compare with best known deterministic, $O(nk^{1/3})$ [Dey]). Proof idea:
 - Use vertical lines equipartition on *P* (not on the points).
 - Use argument in previous theorem to bound k-edges within parts.
 - Use convex chains to bound k-edges across parts.
- An idea: replace vertical lines partitioning by polynomial partitioning. **Open problem**: What is the maximum (finite) # of times that an irreducible non-singular degree r algebraic curve can intersect the k-edge graph of a set of n points in the plane? We prove between nr and nr^2 . If true is nr, we can improve our bound on $E_P(k, n)$.

Expected number of k-facets. Our results.

- The argument we use from [Bárány Steiger] gives morally O(n^{(#d.o.f. of shapes)-1/2}) bound for k-sets. How loose is this?
- [Our result] If we allow shapes beyond hyperplanes/halfspaces, it is tight: For certain distributions on R^2 and translations of any fixed strictly convex curve (two d.o.f.), $E(\# \text{ of induced } k-\text{sets on } n \text{ random points}) = \Theta(n^{3/2})$ (up to polylog factors).

Expected number of k-facets of random Gaussian point sets in \mathbb{R}^d

- $S = \{X_1, ..., X_n\}$: iid random Gaussian sample of n points in \mathbb{R}^d . $P = \operatorname{conv}(S)$.
- E(# of facets of P)?
 - For fixed d and as $n \to \infty$, well studied. [Raynaud] [Rényi Sulanke] give precise asymptotics.
 - Both d and n grow? Particularly, proportional regime $n \approx cd$ (relevant for applications).
 - [Vershik Sporyshev] [Donoho Tanner] In proportional regime: degree of neighborliness of *P* and indirect information about # of facets of *P*.
 - [Böröczky Lugosi Reitzner] $n \ge e^e d$ or n d = o(d). In proportional regime, provides exponential upper and lower bounds.

Expected number of k-facets of random Gaussian point sets in R^d : our results.

• $S = \{X_1, ..., X_n\}$: iid random Gaussian sample of *n* points in \mathbb{R}^d . $\mathbb{P} = \operatorname{conv}(S)$.

- **Thm [our work]**: If $n/d \rightarrow \alpha > 1$ and $k/(n-d) \rightarrow r \in [0,1]$, then $E(\# \text{ of } k-\text{facets of } S) = C^{d+o(d)}$ with an easy way to determine C.
- Example: If n = 2d and k = 0 (facets), then $C = 4\sqrt{2\pi} \max_{y \in R} \Phi(y)\Phi'(y) \approx 2.44$, where Φ is CDF of N(0,1).
- Proof idea:
 - Extend formula in [Hug Munsonius Reitzner] from facets to k-facets to get equivalent 1-dim problem: **Thm [our work]:** $P(X_1, ..., X_d \text{ is a } k-\text{facet of } S) = P(Y \text{ is } k+1^{\text{st}} \text{ largest or } k+1^{\text{st}} \text{ smallest in } \{Y, Y_1, ..., Y_{n-d}\})$, where $Y \sim N(0, 1/d)$ and $Y_i \sim N(0, 1)$ and all are independent. Proof idea: Project onto line perpendicular to $aff(X_1, ..., X_d)$ and determine distributions of projected random variables.
 - Write then $P(X_1, ..., X_d \text{ is a } k-\text{facet of } S) = 2\binom{n-d}{k} \frac{\sqrt{d}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(y)^k (1 \Phi(y))^{n-d-k} e^{-\frac{dy^2}{2}} dy$
 - E.g. for n = 2d, k = 0 (facet): $P(X_1, ..., X_d$ is a facet of $S) = 2\frac{\sqrt{d}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (1 \Phi(y))^d e^{-\frac{dy^2}{2}} dy$
 - Use the following "easy" asymptotic expansion of integral: $\int_{R^d} f(x)^p dx = ||f||_{\infty}^{p+o(p)}$ as $p \to \infty$. Proof: Start with " L^p norm of function converges to L^{∞} norm as $p \to \infty$ " under mild assumptions, then raise to pth power.

