The k-set problem: general shapes and random point sets

Luis Rademacher
UC Davis
Joint work with Brett Leroux

The k-set problem

Halving line problem

- [Simmons, before 1971]: Proposed the problem.
- [Straus] First lower bound.
- [L. Lovász] On the number of halving lines, Ann. Univ. Sci. Budapest, Eötvös, Sect. Math. 14:107-108, 1971.
- [Edelsbrunner Welzl] Rediscovered in connection with complexity of search problems in computational geometry.
- P : a finite set of points in R^{2}.
- Halving line of P : a line through two points in P that splits the rest in half.
- Halving line problem: Let $e(n)=$ "the maximum number of halving lines over sets of n points". How does $e(n)$ grow?
- As a geometric graph: Halving edge graph $G=(V, E)$, where $V=P$ and place an edge between pairs of vertices determining a halving line.
- Assume from now on that point sets are in general position: no three on a line.

$$
e(4)=3
$$

(figure by Jeff Erickson)

A generalization: k -edges and the k-edge graph

- P : a finite set of points in R^{2}.
- k-edge of \boldsymbol{P} : a pair of points $u, v \in P$ such that the line through them has k points on one side.
- Let $e(k, n)=$ "the maximum number of k-edges over sets of n points". How does $e(k, n)$ grow?
- k-edge graph: $G=(V, E)$ where $V=P$ and $E=\{$-edges $\}$.
- Halving edge $=$ "k-edge with $k=(n-2) / 2$."

A variation: the k-set problem

- P : a finite set of point on the plane.
- k-set of \boldsymbol{P} : a subset of k points that can be separated from the rest by a line.
- k-set problem: Let $a(k, n)=$ "the maximum number of k-sets over sets of n points". How does

$$
k=2, n=4
$$ $a(k, n)$ grow?

- Proposition: $a(k, n)=e(k-1, n)$. Proof idea:
- Take a line that defines a k-set with $k=n / 2$.
- Rotate it clockwise as much as possible without crossing points.
- This gives a halving edge and is a bijection.

Some bounds for $e(n)$ (max halving lines)

- Asymptotic upper bounds*:
- $O\left(n^{3 / 2}\right)$ [Lovász] Proof soon.
- $O\left(n^{4 / 3}\right)$ [Dey] Proof soon.
- Asymptotic lower bounds:
- $\Omega(n \log n)$ [Straus] Recursive construction (right).
- $n e^{\Omega(\sqrt{\log n})}$ [Tóth] More complicated recursive construction.
- Conjecture [Erdős Lovász Simmons Straus]: truth is close to the lower bound, expect $O\left(n^{1+\epsilon}\right)$ for all $\epsilon>0$.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same x ef coordinate, w.l.o.g. (rotate if needed)
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same $x \quad n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same $x \quad n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same $x \quad n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same $x \quad n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same $x \quad n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Structure of k-edge graph: Convex chains

- Assume n is even and no pair of points with same x $n=14$ coordinate, w.l.o.g. (rotate if needed).
- For each $p \in\{n / 2$ leftmost points $\}$:
- Draw a vertical line through p.
- Rotate it counterclockwise around p until it becomes a halving line. This defines a halving edge (p, q) to the right of p.
- Continue rotating around q until it becomes a halving line again. This defines a new halving edge (q, r) to the right of q.
- Continue rotating the line until it becomes vertical again (180° rotation).
- The union of the picked halving edges is a convex chain.

Thm [Dey]: This partitions all halving edges into $n / 2$ convex chains.

Vertical lines argument: $e(n) \leq O\left(n^{3 / 2}\right)$ [Lovász]

- Assume no two points have the same x coordinate w.l.o.g.
- Left to right, draw a vertical line every \sqrt{n} points. This is $\approx \sqrt{n}$ lines partitioning plane.
- Count halving edges as follows:
- Edges within parts:
- Each part contains \sqrt{n} points $\Rightarrow \leq n$ edges per part, \sqrt{n} parts implies $\leq n^{3 / 2}$ edges.
- Edges across parts:
- Each line crosses each convex chain at most once: $\leq n \sqrt{n}$ edges.
- Total $\leq 2 n^{3 / 2}$.

The crossing lemma $\Rightarrow e(n) \leq O\left(n^{4 / 3}\right)$ [Dey]

- Explicit "topological" aspect: crossing lemma.
- Crossing: an intersecting pair of edges in a geometric graph (intersection not at endpoints).
- Lemma (Crossing lemma): Draw a graph $G=(V, E)$ on the plane. If $|E|>4|V|$, then the number of crossings is at least $|E|^{3} / 64|V|^{2}$.
- Thm [Dey]: $e(n) \leq O\left(n^{4 / 3}\right)$.

Proof idea:

- Claim: The halving edge graph has $\leq n^{2} / 2$ crossings (using additional ideas by [Har-Peled]). Proof:
- Consider separately convex chain decomposition and concave chain decomposition.
- Count every crossing of edges (e, f) as e in a convex chain and f in a concave chain.
But a convex chain and a concave chain can cross at most twice.
\Rightarrow number of crossings is at most $2(n / 2)(n / 2)=n^{2} / 2$.
- Crossing lemma \Rightarrow crossings $\geq|E|^{3} / 64 n^{2} \Rightarrow|E| \leq O\left(n^{4 / 3}\right)$.

Proof of crossing lemma: random sampling

Lemma (Crossing lemma) [Ajtai Chvátal Newborn Szemerédi] [Leighton]: Draw a

 graph $G=(V, E)$ on the plane. If $|E|>4|V|$, then the number of crossings is at least $|E|^{3} / 64|V|^{2}$. Proof idea:- Draw G on the plane with v vertices, e edges and c crossings.
- Basic bound: $c \geq e-3 v$.
- Euler's formula \Rightarrow a planar graph with v^{\prime} vertices and e^{\prime} edges satisfies $e^{\prime} \leq 3 v^{\prime}$. Starting from, G, repeatedly "remove one edge from a crossing" until there are no crossings, resulting in $v^{\prime}=v$ vertices and e^{\prime} edges. We have $e^{\prime} \geq e-c \Rightarrow e-c \leq e^{\prime} \leq 3 v^{\prime} \Rightarrow c \geq e-3 v$.
- "Amplify" bound by applying it to a random subgraph of G :
- Pick each vertex with probability p. E (\#vertices) $=p v, \mathrm{E}$ (\#edges) $=p^{2} e, \mathrm{E}(\#$ crossings $)=p^{4} c$.
- Basic bound gives $p^{4} c \geq p^{2} e-3 p v$.
- Take $p=4 v / e$ (say, optimize over p) to get $c \geq e^{3} / 64 v^{2}$.

The d-dimensional case

- P : a finite set of points in R^{d} in general linear position (any $d+1$ or fewer are affinely independent).
- halving facet: d points that determine a hyperplane (and simplex) that splits the rest in half.
- k-facet: d points that determine a hyperplane (and simplex) that has k points on one side.
- Some known bounds on max \# of halving facets:
- $O\left(n^{d}\right)$ (clearly)

$$
d=3, n=7, k=2
$$

- $O\left(n^{d-\epsilon_{d}}\right)$ where $\epsilon_{d} \approx 1 / d^{d}$ [Alon Bárány Füredi Kleitman] (via colorful Tverberg theorem)
- $n^{d-1} e^{\Omega(\sqrt{\log n})}$ [Seidel]

"Topological" aspect: colorful Tverberg theorem

- Thm [Radon]: Any set of at least $d+2$ points in R^{d} has a partition into parts P_{1}, P_{2} so that $\operatorname{conv}\left(P_{1}\right) \cap \operatorname{conv}\left(P_{2}\right) \neq \varnothing$.
- Thm [Tverberg]: Radon but partition into r parts,
 different bound.
- Thm (Colorful Tverberg) [Bárány Füredi Lovász] [Živaljević Vrećica]: Tverberg but points are colored with t colors and the r subsets are disjoint (not a partition) and each subset picks one point from each color. Different bound.

Problem easier for special point sets?

- Points in convex position in R^{2} ? Yes, always $n / 2$ ("diagonals of a polygon", exact count!).
- Points in convex position in R^{3} ? Yes, always $(n-1)^{2} / 4$ (see below).
- Points in convex position in R^{d} ? Unknown. But some improvement beyond general case possible, later.
- "Correct" generalization of convex position from R^{2}, R^{3} to R^{d} : neighborly point sets.
- Def: A finite set of points P in R^{d} is neighborly if every subset of $[d / 2]$ or less points of P determines a face of $\operatorname{conv}(P)$ (has a supporting hyperplane containing exactly those points).
- If P has $>d+1$ points, then " $\lfloor d / 2\rfloor$ " is largest possible by Radon's theorem.
- By Upper Bound Theorem/Dehn-Sommervile equations: P is neighborly (and in general position) $\Rightarrow \#$ of facets of $\operatorname{conv}(P)$ is determined by n and d. Explicit formula.

Every 1,2 and 3 points form a face

Not every 2 points form a face

- Note that a facet is a k-facet for $k=0$.
- Random sampling type technique from [Clarkson Shor]:
P is neighborly (and in general position) $\Rightarrow \#$ of k-facets of P is determined by n, k and d. Explicit formula [Andrzejak Welzl] [Wagner].

Application of random sampling technique [Clarkson Shor]

Prop: P is neighborly (and in general position) $\Rightarrow \#$ of k-facets of P is determined by n, k and d. Explicit formula [Andrzejak Welzl] [Wagner].
Proof idea:

- Subsets of neighborly point sets are neighborly.
- By previous theorem, \# of facets of every subset of P is determined by its \# of points and d.
- Let Q be P with a random point removed.

Let $R \subseteq P$ be a fixed 1 -facet of $P \cdot P(R$ is a facet of $Q)=1 / n$.
Let $S \subseteq P$ be a fixed facet of $P \cdot P(S$ is a facet of $Q)=(n-d) / n$.

- $E(\#$ of facets of $Q)=\frac{1}{n}$ (\# of 1 -facets of $\left.P\right)+\frac{n-d}{n}(\#$ of facets of $P)$.
- This determines \# of 1-facets of P.
- Similar argument for \# of 2-facets of P, \# of 3-facets of P, etc.

The k-set problem: general shapes and random point sets

The k-set problem for general set systems

- Halving line problem: asymptotics of max \# of pairs of points determining a line that splits the rest in half.
- General set systems version: replace lines by another family of shapes determined by a fixed small number of points.
- Example:

Thm [Lee] [Ardila]: Let $P \subseteq R^{2}$ be a finite set of $2 n+1$ points in general position (no 4 on a circle, no 3 on a line). Then the \# of ways in which a circle going through 3 points splits the rest in half is n^{2}.

- Circles problem is easier than lines: exact count. (like neighborly point set case). Any set of n points in general
 position has the same count.

Exact count for circles

- Thm [Lee] [Ardila]: Let $P \subseteq R^{2}$ be a finite set of $2 n+1$ points in general position (no 4 on a circle, no 3 on a line). Then the \# of ways in which a circle going through 3 points splits the rest in half is n^{2}.
- Proof idea:
- Map points to $R^{3}:(x, y) \mapsto\left(x, y, x^{2}+y^{2}\right)$.
- Mapped set of points is in convex=neighborly position.
- Convex position because map embeds R^{2} as a paraboloid, a strictly convex surface.

- Neighborly because convex=neighborly position in R^{3}.
- Halving facet in $R^{3} \leftrightarrow$ halving circle in R^{2}. Namely, $A x+B y+C z=D \leftrightarrow A x+B y+C\left(x^{2}+y^{2}\right)=D$
- Use exact count of halving facets for neighborly.

Our results: Exact count for conic sections

- Want: replace halving lines by "halving conic sections." (conic section=set in R^{2} satisfying $A x^{2}+B x y+C y^{2}+D x+E y+F=0$, generically a parabola, hyperbola or ellipse)
- How? Idea: set systems/shapes/surfaces induced by maps.
- $\operatorname{Map} \varphi: R^{2} \rightarrow R^{5}, \varphi(x, y)=\left(x^{2}, x y, y^{2}, x, y\right)$.

Then a hyperplane $\left\{v \in R^{5}: a \cdot v=b\right\}$ induces 3 regions in R^{2} :

- $a \cdot \varphi(x, y)<b$,
- $a \cdot \varphi(x, y)>b$ and
- a "boundary/surface" $a \cdot \varphi(x, y)=b$.
- "Boundary" is a conic section.
- Def (Halving conic section of $\boldsymbol{P} \subseteq \boldsymbol{R}^{\mathbf{2}}$): set of 5 points S of P such that $\varphi(S)$ a halving facet (determines a halving hyperplane) of $\varphi(P)$ in R^{5}.
- Thm [our work]: Any set of n points in R^{2} in general position has ($n-$ $1)^{2}(n-3)^{2} / 64$ halving conic sections.

Our results: Exact count for conic sections

- Thm [our work]: Any set of n points in R^{2} in general position has $(n-1)^{2}(n-3)^{2} / 64$ halving conic sections.
Proof idea:

- Map points to $R^{5}:(x, y) \mapsto\left(x^{2}, x y, y^{2}, x, y\right)$.
- Proposition (mapped set of points is in neighborly position):

Assume a finite set of points $S \subseteq R^{2}$ is in general linear position. Then $\varphi(S)$ is neighborly.
Proof: Let $u, v \in S$. We need to find a conic section inequality "passing" though those two points and with all other points on one side. Use line $a x+b y=c$ through u and v. The desired inequality is $(a x+b y-c)^{2} \leq 0$.

- Halving facet in $R^{5} \leftrightarrow$ halving conic section in R^{2}.

- Use exact count of halving facets for neighborly point sets.

Our results: Exact count for some polynomial families (even degree homogeneous)

- Thm (neighborly) [our work]: If m is even and $S \subseteq R^{2}$ is in general position (no two points on a common line through the origin), then the image of S through the map of all monomials of degree m is neighborly.
Proof idea: Like for conic sections, find support hyperplanes by constructing explicit polynomials.
- Thm (exact count) [our work]: Assume m is even. Any set of $2 n+m+1$ points of R^{2} in general position with respect to degree m homogeneous polynomials has exactly $2\binom{k+m / 2}{m / 2}\binom{n-k-m / 2-1}{m / 2}$ "degree m homogeneous polynomials"-k-facets. Proof idea: Like conic sections.
- Why does m need to be even? \# of monomials in $\operatorname{map} \varphi$ is $m+1$.

If m odd, $\#$ of monomials in map φ is even (and vice-versa) \Rightarrow embedding dimension is even
\Rightarrow neighborliness is "stronger" requirement ($\lfloor d / 2\rfloor)$).
E.g. "all pairs of points are a face" in R^{4} and same "with more room" in R^{5}, not stronger.

Does not work.

Our results: Neighborliness and improved bounds for other polynomial families in R^{d}

- Def: Finite $P \subseteq R^{p}$ is \boldsymbol{k}-neighborly if every subset of k or less points of P determines a face of $\operatorname{conv}(P)$. Example: "neighborly in $R^{4 "}=$ "2-neighborly", while "1-neighborly"="convex position."
- Thm [our work] (neighborliness for degree $\leq \boldsymbol{m}$ polynomials). $\varphi: R^{d} \rightarrow R(\underset{\sim}{d+m} \underset{m}{d})-1$: all monomials of degree $\leq m$. $S \subseteq R^{d}$: a finite set such that $\varphi(S)$ is in general linear position. Then $\varphi(S)$ is $\left(\binom{d+m / 2}{m / 2}-1\right)$-neighborly.
- Example $\mathrm{d}=4, \mathrm{~m}=2$: embedding is 4 -neighborly in R^{14}. Not neighborly ($=7$-neighborly) \Rightarrow no exact count of k-facets via our argument.
- Thm [our work]: $S \subseteq R^{d}$ is a set of n points in convex position \Rightarrow "\#k-facets of $S^{\prime \prime} \leq \frac{n}{d}$ " $\max \# \mathrm{k}$-facets in R^{d-1} for $n-1$ points." Proof idea: stereographic projection.
Example: Best known bound for halving facets in R^{3} is $O\left(n^{5 / 2}\right)$, in R^{4} is $O\left(n^{4-2 / 45}\right)$. Our thm gives $O\left(n^{7 / 2}\right)$ for points in convex position in R^{4}
- Thm [our work]: Like last theorem but assuming m-neighborly and giving better bound.
- Can use general upper bounds on \# of halving facets in $R\binom{d+m}{m}-1$ to get upper bounds on \# of halving polynomials of degree $\leq m$.
- Thms above can be combined to get better than general bounds on \# of halving polynomials of degree $\leq m$.
- Similar results for homogeneous polynomials.

Limits of neighborliness argument: neighborly embeddings

- Our mapping $\varphi: R^{d} \rightarrow R^{p}$ induces a d-manifold in R^{p}.
- Def (k-neighborly embedding of a manifold): A d-manifold M embedded into R^{p} is k-neighborly if for every k-subset $S \subseteq M$ there is a hyperplane H that contains S and the rest of M is on one open side of H. Also neighborly $=\lfloor 2 / 2]$-neighborly.
Examples: The moment curve $x \mapsto\left(x, x^{2}, \ldots, x^{p}\right)$ is neighborly.
Image of map $(x, y) \mapsto\left(x^{2}, x y, y^{2}, x, y\right)$ is 1 -neighborly. (Proof: a tiny empty circle passing through point) Not 2-neighborly. (Proof: 3 collinear points + other points)
- Problem of whether a map embeds points in neighborly position relates to a problem of Micha Perles: Open problem [Perles]: What is the smallest dimension $p(k, d)$ of the ambient space in which a k neighborly d-dimensional manifold exists?
- [Kalai Wigderson] $k(d+1) \leq p(k, d) \leq 2 k(k-1) d$
- Def (generally k-neighborly manifold): $\{n$-tuples of points that are k-neighborly $\} \subseteq R^{n p}$ contains an open and dense set $\forall n$. Example: Image of map $(x, y) \mapsto\left(x^{2}, x y, y^{2}, x, y\right)$ is generally 2-neighborly (our result).
- In our case:

Open problem [our work]: What is the smallest dimension $p_{g}(k, d)$ of the ambient space in which a generally k-neighborly d-dimensional manifold exists?

- Our conjecture: $p_{g}(k, d)=2 k+d-1$.

Limits of neighborliness argument: neighborly embeddings

- In our case:

Open problem [our work]: What is the smallest dimension $p_{g}(k, d)$ of the ambient space in which a generally k-neighborly d-dimensional manifold exists?

- Our conjecture: $p_{g}(k, d)=2 k+d-1$.
- Our results:
- $p_{g}(k, d) \leq 2 k+d-1$.
- If "manifold" replaced by "algebraic variety," then $p_{g}(k, d)=2 k+d-1$.
- If our conjecture is true then exact counting via embeddings is not possible in R^{d} for $d \geq 3$.
Proof for $d=3: R^{3}$ embeds into R^{p} with $p \geq 2 k+2$, which implies $k<\lfloor p / 2\rfloor$. Same argument for larger d.

Expected number of k-facets

- Suppose S is an iid random sample of n points according to some distribution P in R^{d}. What is $E_{P}(n)=E$ (\# of halving facets of S)?
What is $E_{P}(k, n)=E$ (\# of k -facets of S)?
- Assume measure via P of every hyperplane is 0 . Implies general position of S a.s.
- [Bárány Steiger]
- $E_{P}(n)=O\left(n^{d-1}\right)$ if P is spherically symmetric.
- $E_{P}(n)=O(n)$ if P is uniform in a convex body in R^{2}.
- [Clarkson] $E_{P}(n)=O\left(n^{d-1}\right)$ if P is coordinate-wise independent.
- This is some evidence for belief that lower bound is closer to truth in k -set problem.
- What about more general distributions?
- Note that there exist P in R^{2} such that $E_{P}(n)=n e^{\Omega(\sqrt{\log n})}$ (i.e. same as best lower bound for non-random).
- It is believed growth of $E_{P}(n)$ can be as fast as deterministic case, but this is open.

Expected number of k-facets. Our results.

- Thm: If μ is a probability distribution on R^{d} such that the measure of every hyperplane is 0 , then $E_{\mu}(n)=$ $O\left(n^{d-1 / 2}\right)$ (compare with best known deterministic " $O\left(n^{d-d^{-d}}\right)$ ").

Proof idea (follows from idea of [Bárány Steiger]): $\ln R^{2}$ for points X_{1}, \ldots, X_{n} according to μ,

$$
\begin{aligned}
& E(\# \text { of halving edges) } \\
& =\binom{n}{2} P\left(X_{n-1}, X_{n} \text { is a halving line }\right) \\
& =\binom{n}{2}\binom{n-2}{(n-2) / 2} P\left(X_{1}, \ldots, X_{(n-2) / 2} \text { below } \operatorname{aff}\left(X_{n-1}, X_{n}\right) \text {, rest above }\right) \\
& =\binom{n}{2}\binom{n-2}{(n-2) / 2} \int \mu\left(\text { below } \operatorname{aff}\left(x_{n-1}, x_{n}\right)\right)^{\frac{n-2}{2}}\left(1-\mu\left(\text { below } \operatorname{aff}\left(x_{n-1}, x_{n}\right)\right)\right)^{\frac{n-2}{2}} d \mu\left(x_{n-1}\right) d \mu\left(x_{n}\right) \\
& \leq \frac{\binom{n}{2}\left(\begin{array}{c}
n-2) / 2 \\
(n-2) / 2
\end{array}\right.}{4-2-2) / 2} \\
& =O(1-t) \leq 1 / 4 " \\
& \left.n^{3 / 2}\right) .
\end{aligned}
$$

Expected number of k-facets. Our results.

- Thm: For any probability P_{4} on R^{2} such that the measure of every line is 0 , $E_{P}(k, n) \leq 10 n(k+1)^{1 / 4}$ (compare with best known deterministic, $O\left(n k^{1 / 3}\right)$ [Dey]). Proof idea:
- Use vertical lines equipartition on P (not on the points).
- Use argument in previous theorem to bound k-edges within parts.
- Use convex chains to bound k-edges across parts.
- An idea: replace vertical lines partitioning by polynomial partitioning. Open problem: What is the maximum (finite) \# of times that an irreducible non-singular degree r algebraic curve can intersect the k-edge graph of a set of n points in the plane? We prove between $n r$ and $n r^{2}$. If true is $n r$, we can improve our bound on $E_{P}(k, n)$.

Expected number of k-facets. Our results.

- The argument we use from [Bárány Steiger] gives morally $O\left(n^{(\# d . o f .}\right.$ of shapes)-1/2$)$ bound for k-sets. How loose is this?
- [Our result] If we allow shapes beyond hyperplanes/halfspaces, it is tight: For certain distributions on R^{2} and translations of any fixed strictly convex curve (two d.o.f.), E (\# of induced k-sets on n random points) $=\Theta\left(n^{3 / 2}\right)$
 (up to polylog factors).

Expected number of k-facets of random Gaussian point sets in R^{d}

- $S=\left\{X_{1}, \ldots, X_{n}\right\}$: iid random Gaussian sample of n points in R^{d}. $P=\operatorname{conv}(S)$.
- E (\# of facets of P)?
- For fixed d and as $n \rightarrow \infty$, well studied. [Raynaud] [Rényi Sulanke] give precise asymptotics.
- Both d and n grow? Particularly, proportional regime $n \approx c d$ (relevant for applications).
- [Vershik Sporyshev] [Donoho Tanner] In proportional regime: degree of neighborliness of P and indirect information about \# of facets of P.
- [Böröczky Lugosi Reitzner] $n \geq e^{e} d$ or $n-d=o(d)$. In proportional regime, provides exponential upper and lower bounds.

Expected number of k-facets of random Gaussian point sets in R^{d} : our results.

- $S=\left\{X_{1}, \ldots, X_{n}\right\}$: iid random Gaussian sample of n points in $R^{d} . P=\operatorname{conv}(S)$.
- Thm [our work]: If $n / d \rightarrow \alpha>d$ and $k /(n-d) \rightarrow r \in[0,1]$, then E (\# of k-facets of S) $=C^{a+o(d)}$ with an easy way to determine C.
- Example: If $n=2 d$ and $k=0$ (facets), then $C=4 \sqrt{2 \pi} \max _{y \in R} \Phi(y) \Phi^{\prime}(y) \approx 2.44$, where Φ is CDF of $N(0,1)$.
- Proof idea:
- Extend formula in [Hug Munsonius Reitzner] from facets to k-facets to get equivalent 1-dim problem:
Thm [our work]: $P\left(X_{1}, \ldots, X_{d}\right.$ is a k-facet of $\left.S\right)=P\left(Y\right.$ is $\mathrm{k}+1^{\text {st }}$ largest or $\mathrm{k}+1^{\text {st }}$ smallest in $\left.\left\{Y, Y_{1}, \ldots, Y_{n-d}\right\}\right)$, where $Y \sim N(0,1 / d)$ and $Y_{i} \sim N(0,1)$ and all are independent. Proof idea:'Project onto line perpendicular to aff $\left(X_{1}, \ldots, X_{d}\right)$ and determine distributions of projected random variables.
- Write then $P\left(X_{1}, \ldots, X_{d}\right.$ is a k-facet of $\left.S\right)=2\binom{n-d}{k} \frac{\sqrt{d}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(y)^{k}(1-\Phi(y))^{n-d-k} e^{-\frac{d y^{2}}{2}} d y$

Use the following "easy" asymptotic expansion of integral: $\int_{R^{d}} f(x)^{p} d x=\|f\|_{\infty}^{p+o(p)}$ as $p \rightarrow \infty$.
Proof: Start with " L^{p} norm of function converges to L^{∞} norm as $p \rightarrow \infty^{\prime \prime}$ under mild assumptions, then raise to p th power.

