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@ Introduction
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(Truncated) distributions

e Multivariate probability distribution with density function 7(x)
@ Truncate 7 to a polytope P := {Ax < b} we obtain p.d.f. 7p

f(x)m(x) F(x) = { 1, ifxeP

mp(x) = Tom(x)dx’ 0, ifx¢P

The support is the polytope P and wp is the uniform ditribution over P.
In general the support is a convex body K C R"
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Sample (efficiently?) from a (truncated) distribution with density wx ?

Interesting directions

o Algorithms
o Complexity bounds (which computational model? what do we measure?)

@ Take advantage of the geometry of support K C R”
(non-linear, e.g., spectrahedron, basic semi-algebraic set)

Can we do better when n is small, e.g., n=2,37

Applications
(Volume, integration, Bayesian inference, optimization, ...)
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@ Introduction

@ Exact sampling
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Uniform Sampling from the hypersphere

@ To sample uniformly from the boundary of a hypersphere of radius r:

1. Sample d numbers g1, ..., gq from N(0, 1).

2. The point v =r(g1,...,84)/\/D_ & is uniformly distributed on the
surface of the d-dim hypersphere, of radius r and center the origin.

@ To sample uniformly from the interior of a hypersphere with radius r:
1. Sample a point v ~ U(9By) and u ~ U(0,1).
2. The point p = ru'/9v is uniformly distributed in the interior of the
d-dim hypersphere, of radius r and center the origin.

To pick a random direction through point p € R we sample from the surface of

a hypersphere centered at p.
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Uniform Sampling from the simplex

1. [Smith, Tromble: 2004]:
o Generate distinct: xp < x3 < --+ < Xg+1 € N*.
Return y: y; = X';,V);'*l i=1,...,d+ 1. M: largest integer.

e To guarantee distinct choice we use a variation of Bloom filter.
e Sampling one point takes O(d log d).

2. [Rubinstein, Melamed: 1998|:
o Generate independent unit-exponential random variables,
Xy, Xgp1. Return Y € RIHL Y, = X/ 20 X,
° Sampllng one point takes O(d).

Generalizations? e.g., Zontopes.
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© MCMC sampling
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© MCMC sampling
@ Sampling algorithms
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Acceptance-rejection sampling

o Let m(x) = f(x)/C, x € RY, where
f(x) is an unnormalized density and C € R a normalizing constant.

@ Let h(x) a PDF that can be simulated by some known method and
f(x) < kh(x), where k € R is a constant.

To obtain a sample from 7(x),
1. Generate a candidate Z from h(x) and a value u from #/(0, 1).
2. If u<f(Z)/kh(Z) return Z.
3. Otherwise goto 1.

[Flury: 1990]
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Acceptance-rejection sampling

Drawbacks

e Sampling/rejections techniques (sample from bounding box)
fail in high dimensions

'\‘

vol(unitball) O((l/d)d)

vol(unitcube)
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Geometric Random Walks

A Geometric Random Walk starts at some interior point and at each
step moves to a "neighboring” point, chosen according to some
distribution depending only on the current point.

. Uniform sampling
A Billiard Walk step. (via the Billiard Walk).
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Markov Chain Monte Carlo sampling

A MCMC sampling algorithm applies on a continuous state space K C RY
@ Starts at a point xp € K.
@ Being on x;, we move to x;;1, according to a transition kernel py(A).

@ The transition kernel of a MCMC algorithm is
the probability to jump from x to a set A C K.

o For example py(K) = 1.
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Markov Chain Monte Carlo sampling

To sample from a density 7(x) define a random walk on a continuous
state space with a transition kernel p,(A) such that,

1. [Convergence]
[ pAndx = [ #(y)dy

Then 7(x) is called target density.
2. [Uniqueness] limy_o0 pR(A) = [, 7m(y)dy, where

pI(A) = /P P (y)py (A)dy.

the transition kernel of the n-th iteration.

[Chib, Greenberg: 1995] Understanding the Metropolis-Hastings Algorithm.
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Useful questions and terminology

@ Does the random walk converges asymptotically to
the (uniform) distribution? (Correctness)

@ How fast does it converge?
(Equivalently) How many steps do we have to perform until we get a
uniform point? (mixing time)
@ Does the initial point of the walk affects the efficiency? (warm start)
@ What is the cost per step of the random walk?

@ Do we assume anything about K? (isotropic position, well rounded)

v
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Ball walk

Ball Walk(K, p, 6, f): convex K CRY, p € P, radius , f : RY — R
1. Pick a uniform random point x in B(p,9).

2. return x with probability min {1, ::83};

return p with the remaining probability.

If the density is not restricted in K, then it is the Metropolis-Hastings algorithm.



Hit and Run(K, p, f): convex K C RY, point pc P, f : R — R,
1. Pick uniformly a line £ through p.

2. return a random point on the chord £ N K chosen from the
distribution my ¢ restricted in K N /.

@ Q: How do we compute £ N K? Can we do it exactly?
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Billiard walk - Uniform case

BW(K, p;, 7, R) [Polyak'14]

1. Generate the length of the trajectory L = —7Inn, n ~ U(0,1).

2. Pick a uniform direction v to define the trajectory. then the direction
becomes v < v — 2(v, s).

3. If the trajectory meets a boundary with internal normal s, ||s|| =1,

4. return the end of the trajectory as pji1.
If the number of reflections exceeds R, then return p;;1 = p;.
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@ Uniform sampling from the hypercube [—1,1]2% and projection to R3.

@ Rows: Ball Walk, Coordinate Directions Hit and Run, Random
Directions Hit and Run, Billiard Walk.

e Columns: walk length, {1, 50, 100, 150, 200}
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(Some of the) Limitations of BW and HnR

o Their mixing time is O(d?3) for log-concave distributions.

@ Their performance is crucially affected by the starting point.

@ Typically, we need a warm start.
A distribution S is M-warm w.r.t. to the distribution @, if

S(4)

M =
Acp Q(A)

o Better efficiency if the distribution is (approximately) isotropic.
A distribution @ is is isotropic if

Eq[X] =0, and E[XX ] = Iy
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© Sampling and Spectrahedra
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© Sampling and Spectrahedra
@ Hamiltonian Monte Carlo
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Truncated log-concave sampling

Definition

Let m(x) oc e F¥), where f : RY — R is a convex function.
7(x) is called log-concave (LC) probability density.

o Let m(x) be restricted to convex body K C RY.

@ Important examples: Uniform, Gaussian, Boltzmann.




Another view of Billard Walk and Hit-and-Run
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Hamiltonian Monte Carlo

@ Being at p € K, HMC introduces an auxiliary random variable
v € RY and generates samples from the joint density

m(p,v) = n(v|p)(p),

e Marginalize out v, then recover the target dist. 7(p).

e Consider v ~ N (0, Iy);
PDF 7(p, v) = e H(P¥) defines a Hamiltonian,

1
H(p,v) = —log(p,v) = —logn(p) + 5 |v[*,



Hamiltonian Monte Carlo

@ HMC simulates a particle moving in a conservative field determined
by —log w(p) and —V log 7(p).

e HMC, starting from a position p, generates a new state:

1. Draw a value for the momentum, v ~ A(0, ;)
2. (p, v) is given by the Hamilton's system of ODE:

@ — aH(pv V) dp(t) — V(t)

dt ov dt 1
dv OH(p,v) = (1)
— = wv(t) — _vio w(p)
dt op dt gTp

@ Solve the ODE using
— Euler methods (e.g., Leapfrog) [Neal: 2012] or,
— Collocation method [Vempala,Lee,Song : 2018].



Solving the ODE

@ Usually we use the leapfrog method.

@ It is a variant of Euler’'s method:

v(t+e/2) =v(t) + (¢/2)Vlog(m(p(t)))
p(t+¢€) = p(t) +ev(t +€/2) (2)
v(t+e)=v(t+¢€/2)+ (¢/2)V log(m(p(t +€)))

What is the bit complexity of leapfrog in our setting? \
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Hamiltonian Monte Carlo

o If the density is restricted in K, then the trajectories of HMC are in K.

2
0
2
-4
6
8
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Random walks for
truncated log-concave sampling

[ Year & Authors Random walk Mixing time™ Distribution
[Smith: 1986] Hit-and-Run O(d%) any LC
[Berbee, Smith: 1987] Coordinate Hit-and-Run 0(d0) any LC
[Lovasz,Simonovits'90] Ball walk O(d%) any LC
[Kannan,Narayanan'12] Dikin walk 0(d?) uniform (H-polytope)
[Polyak,Dabbene’14] Billiard walk 77 uniform
[Afshar,Domke’15] Reflective HMC 7 any LC (polytopes)
[Lee,Vempala'16] Geodesic walk Oo(md3/*) uniform (H-polytope)
[Lee,Vempala'17] Remannian HMC O(md*/3) uniform (H-polytopes)
[Chen, Dwivedi,Wainwright, Yu'19] John walk 0(d°/?) uniform (H-polytope)
[Chen,Dwivedi,Wainwright,Yu'19] Vaidya walk O(m1/2d3/2) uniform (H-polytope)

Cost per sample: cost per step X mixing time (#steps).

The cost per step depends on the convex body.

Hit-and-Run (HR): widely used & well studied.

Coordinate Hit-and-Run (CDHR): seems more efficient than HR in practice.
Existing software uses either CDHR or HR (H-polytopes).




© Sampling and Spectrahedra

@ Spectrahedta and Reflective Hamiltonian Monte Carlo
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Definition
A spectrahedron S C R is the feasible set of a linear matrix
inequality. If A; are symmetric matrices in R™*™ and

F(X) = Ay +x1A1+ - +XdAd,

then S = {x € R?| F(x) = 0}.

S is the feasible set of a Semidefinite Program (SDP)



Reflective Hamiltonian Monte Carlo (ReHMC)

@ When the density is restricted in a convex body K then HMC
trajectory stays inside K by using boundary reflections.

Case of Leapfrog method

m(x) Discrete Hamiltonian trajectory

We pre-select the number of Leapfrog steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

It converges to the target distribution when K is a spectrahedron.




Reflective Hamiltonian Monte Carlo (ReHMC)

@ When the density is restricted in a convex body K then HMC
trajectory stays inside K by using boundary reflections.

Case of collocation method

Polynomial Hamiltonian
7(x) trajectory

We randomly select the integration time in each steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.




Correctness of ReHMC

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

For a smoothly differentiable negative log-density f, where
m o exp(—f(x)), the discretized reflective Hamiltonian Dynamics are
volume-preserving and time-reversible.

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.
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© Sampling and Spectrahedra

@ Geometric Predicates and Algebraic Algorithms
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Geometric and algebraic oracles

For (almost) all geometric random walks we need:
@ Membership oracle
e Boundary (intersection) oracle

o Reflection oracle




Membership oracle

MEMBERSHIP(F, p): An LMl F(x) = 0 < Ag + x1A; + -+ + x4Ag = 0
representing a spectrahedron S and a point p € R9.

1. Amin < smallest eigenvalue of F(p).

2. if Apin > 0 return TRUE else return FALSE.




Boundary oracle

INTERSECTION(F, ®(t)):

An LMI F(x) = 0 < Ag + x1A; + - - + x4Aq = 0 for a spectrahedron S,
Ot d(t) == (pi(t),...,p4(t)) parameterization of a polynomial curve,
where pi(t) = > 7, pijt/, and ®(0) € S.

1. Solve the polynomial eigenvalue problem
F(®(t))x =0« (Bo+tBy+---+ t'By)x = 0,

where Bk = 21‘1:1 Pj,k AJ'

J

2. Smallest positive and largest negative eigenvalues A, AF.

3. return the boundary points F(®(\,,,)) and F(®(\}. )




Reflection oracle

REFLECTION(F, ®(t), Ay):
An LMI F(x) = 0 < Ag + x1A; + - - - + xgAg = 0 for spectrahedron S,
®(t) parameterization of a polynomial curve, Ay s.t. $(Ay) € S

1. Let the boundary point p, = ®(\;)

2. Let w=Vdet(F(p,))=c-(s'Ais,---,s  Ags),
s vector in the kernel of F(p)

3. return the direction of the reflection
Sy %(H) -2 <V%T(t+)’ w) w




Per-step complexity

\ Random walk \ per-step Complexity \
HR O(m* + mlog(1/€) + dm?)
Coordinate HR O(m® 4+ mlog(1/e) + m?)
Billiard walk O(p(m* + mlog(1/e) + dm?))
ReHMC (collocation) | O(p((nm)* + mnlog(1/€) + dnm?))
ReHMC (leapfrog) O(Lp(m® + mlog(1/e) + dm?))

[Chalkis,Fisikopoulos,Repouskos, T: 2019]
[Chalkis,Emiris,Fisikopoulos,Repouskos, T: 2020]

m: size of the matrices A; in LMI

d: dimension

n: degree of the polynomial curve

p: number of reflections

€: accuracy to approximate the intersection with the boundary
w
L

: exponent in the complexity of matrix multiplication

: number of leapfrog steps



@ About “Applications”
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e About “Applications”
@ SDP and cutting planes
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Cutting planes

Dabbene, Shcherbakov, Polyak, 10’

@ Input: convex body K, objective function c.
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Cutting planes

Dabbene, Shcherbakov, Polyak, 10’

@ Input: convex body K, objective function c.
@ Sample N points under the uniform distribution.

@ Find the point x minimizing the objective function.

Elias . TSIGARIDAS @ Inria . FR



Cutting planes

Dabbene, Shcherbakov, Polyak, 10’

@ Input: convex body K, objective function c.
@ Sample N points under the uniform distribution.
@ Find the point x minimizing the objective function.

o Cut the convex body at x.
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Cutting planes

Dabbene, Shcherbakov, Polyak, 10’

@ Input: convex body K, objective function c.
@ Sample N points under the uniform distribution.

@ Find the point x minimizing the objective function.
o Cut the convex body at x.

o

Repeat / times.
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Cutting planes

@ Let rBy C K C RBy.

@ The expected number of phases s.t. |fj — f*| < € is,

/= [Mdmm/eﬂ — 5(d)

@ Total number of uniform points minimized for N = 1.

o Total cost,
[dln(R/e)—‘ X cost per point

Only Hit&Run has been used up to now
[Bertsimas, Vempala : 2010],[Dabbene, Shcherbakov, Polyak : 2010]

ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020-]
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e About “Applications”

@ SDP and Simulated Annealing
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SDP using Exponential sampling

: Minimize f(x) = ¢” x over a spectrahedron S.

—c"x/T

: Sample from 7(x) x e restricted in S, for

T=Ty> -->Tpn.

N\e ¢ Ne Ne

To T1 T T3

: Compute a sequence of T; € Ry of length M s.t. a
sample from 7T, is close to the optimal solution
with high probability.




Simulated Annealing
Convergence to the optimal solution

AR

e ¢ Tx/T;

Starting with Top = R, where S C RBy (uniform distribution).

o Ti=Ti_1(1— %), i € [M] (Ti—1 is a warm start for T;).

o M = O(V/d) phases to obtain a solution |y — f*| <

Only Hit-and-Run has been used in previous work [Kalai, Vempala : 2006].

ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020-]



@ About “Applications”

@ Volume approximation
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Volume

Complexity

Computing the exact volume of P,

@ is #P-hard for all the representations [DyerFrieze'88]
@ is open if both H- and V- representations available

@ is APX-hard (oracle model) [Elekes'86]
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Randomized approximation algorithms
Multiphase Monte Carlo

[Dyer, Frieze, Kannan'91] For any convex body P and any 0 <¢, § <1,
there is a randomized algorithm which computes an estimate V s.t. with
probability 1 — & we have (1 — €)vol(P) < V < (1 + €)vol(P), and the
number of oracle calls is poly(d,1/¢, log(1/9)).
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Multiphase Monte Carlo

Let a sequence of functions {fy, ..., f,}, fi : RY = R. Then,

O A GO L
wllP) = Lo = [ lian B e T

Then select f; s.t.,

@ The number of phases, m, is as small as possible.

@ Each integral ratio can be efficiently estimated by sampling from
7  f; restricted to P (using geometric random walks).

@ There is a closed formula for [, fm(x)dx.

complexity = #phases X Fpoints per phase X cost per point
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State-of-the-art

Authors-Year Complexity f; random walk

(oracle calls)
[Dyer, Frieze, Kannan'91] 5(d23) Lr}dgczzcl]r function grid walk
Kannan, Lovasz, Simonovits'97 Oo(d® Indicator function ball walk
[

of a ball

[Lovasz, Vempala'03] O(d*) Exponential hit-and-run
[Cousins, Vempala'l5] O(d?) Spherical Gaussians | ball walk

@ Can not be implemented as they are due to large constants in the
complexity and pessimistic theoretical bounds.

Practical algorithms:
@ Follow the theory but make practical adjustments (experimental).
@ [Emiris, Fisikopoulos'14] Sequence of balls + coordinate hit-and-run.

@ [Cousins, Vempala'l6] Spherical Gaussians + hit-and-run
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Multiphase Monte Carlo

o Let C,, C --- C (7 a sequence of concentric balls intersecting P, s.t.
Ch CPCC(G.

@ Construct a sequence of balls intersecting P, then:

vol(PN Cp_1) vol(PNG)  vol(P)
vol(PN Cn)  vol(PN G)vol(PN )

vol(P) = vol(P N Cp,)

m= [dlg%}
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Ratio estimation

vol(PNCii4)

vol(PNG;)

@ Sample N uniform points from P; = C; N P and count points in
Pit1=C1NPC P

@ Estimate r; = within some target relative error ¢;.

0.4
04 03 02 01 0 01 02 03 04 05

o Keep each ratio bounded, then N = O(1/¢?) points suffices.
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Does this approach work?

‘ S-n-m ‘ = ta,l,_l\% Points Time (sec) error ‘
S-40-40 | (1.34+0.12)e06 9975.2 6.7 7
S60-60 | (1.23+0.11)e20 203709 28.5 7
S-80-80 | (4.24 +0.26)e33  31530.1 1244 7

5-100-100 | (1.21 £0.10)e-51 52962.7 362.3 7
*5-28-8 14.31 £ 0.64 4547 .4 10.2 0.05
*5-45-10 0.6334 £ 0.03 19558.1 56.2 0.07
*5-66-12 | (1.734+0.034)e-03 1.01e+05 324.2 0.07

Table: m is the matrix dimension in LMI and n the ambient dimension. The
spectrahedra marked with "*" are elliptopes, i stands for the average volume and
s for the standard deviation. We give a confidence interval with level of
confidence a = 0.05, while t, 1 is the critical value of student'’s distribution
with v — 1 degrees of freedom. Error parameter to e = 0.1.
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@ About “Applications”

@ Sampling on the boundary (surface)
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Volatility detection

[Bachelard, Chalkis, Fisikopoulos, T : 2022]
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(IMO) Some very interesting questions

@ What is the arithmetic/bit complexity of producing one sample in a
polytope/spectrahedron e close to the uniform distribution?
What about any log-concave distribution?

@ What is the arithmetic/bit complexity of computing the volume of a polytope?

@ What is the arithmetic/bit complecity of computing the volume of a
spectrahedron?

@ What is the arithmetic/bit complexity of putting a polytope/spectrahedron in
almost isotropic position?
What do we mean by almost?

@ What is arithmetic/boolean complexity of LP and SDP
using sampling and cutting planes?
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(5

GeomScale org
https://geomscale.github.io

Volesti
) . -® GeomScale/dingo
— B GeomScale/volesti ; .
| . ion & i analyze metabolic networks with
volume approximation & sampling MCMC sampling

from convex bodies
Co-founders: Tolis Chalkis & Vissarion Fisikopoulos & E.T.

Wreds NumFOCUS Affiliated Project.
® Support from an open community.

[ More than 15000 lines of code. Thank you'
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