Sampling from feasible regions of semi-definite programs

Elias TSIGARIDAS

Inria Paris and IMJ-PRG Sorbonne Université

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

GeomScale org and collaborators

Tolis Chalkis

Vissarion Fisikopoulos

Marios Papachristou

Quantagonia

Oracle

Cornell

But also

Veni Arakelian, Cyril Bachelard, Ioannis Emiris, Haris Zafeiropoulos, ...

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

(Truncated) distributions

- Multivariate probability distribution with density function $\pi(x)$
- Truncate π to a polytope $P := \{Ax \leq b\}$ we obtain p.d.f. π_P

$$\pi_P(x) = \frac{f(x)\pi(x)}{\int_P \pi(x)dx}, \quad f(x) = \begin{cases} 1, & \text{if } x \in P\\ 0, & \text{if } x \notin P \end{cases}$$

The support is the polytope P and π_P is the uniform ditribution over P. In general the support is a convex body $K \subset \mathbb{R}^n$

Elias . TSIGARIDAS @ Inria . FR

Problem

Sample (efficiently?) from a (truncated) distribution with density π_K ?

Interesting directions

- Algorithms
- Complexity bounds (which computational model? what do we measure?)
- Take advantage of the geometry of support K ⊂ ℝⁿ (non-linear, e.g., spectrahedron, basic semi-algebraic set)
- Can we do better when n is small, e.g., n = 2, 3?
- Applications

(Volume, integration, Bayesian inference, optimization, ...)

- Who
- Setup
- Exact sampling
- MCMC sampling
 Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

Uniform Sampling from the hypersphere

- To sample uniformly from the boundary of a hypersphere of radius r:
 - 1. Sample *d* numbers g_1, \ldots, g_d from $\mathcal{N}(0, 1)$.
 - 2. The point $v = r(g_1, \ldots, g_d) / \sqrt{\sum g_i^2}$ is uniformly distributed on the surface of the *d*-dim hypersphere, of radius *r* and center the origin.
- To sample uniformly from the interior of a hypersphere with radius r:
 - 1. Sample a point $v \sim \mathcal{U}(\partial B_d)$ and $u \sim \mathcal{U}(0, 1)$.
 - 2. The point $p = ru^{1/d}v$ is uniformly distributed in the interior of the *d*-dim hypersphere, of radius *r* and center the origin.

To pick a random direction through point $p \in \mathbb{R}^d$ we sample from the surface of a hypersphere centered at p.

Uniform Sampling from the simplex

- 1. [Smith, Tromble: 2004]:
 - Generate distinct: $x_0 < x_1 < \cdots < x_{d+1} \in \mathbb{N}^*$. Return y: $y_i = \frac{x_i - x_{i-1}}{M}$, $i = 1, \dots, d+1$. M: largest integer.
 - To guarantee distinct choice we use a variation of Bloom filter.
 - Sampling one point takes O(d log d).
- 2. [Rubinstein, Melamed: 1998]:
 - Generate independent unit-exponential random variables, X_1, \dots, X_{d+1} . Return $Y \in \mathbb{R}^{d+1}$: $Y_i = X_i / \sum_{i=1}^{d+1} X_i$.
 - Sampling one point takes O(d).

Generalizations? e.g., Zontopes.

Elias . TSIGARIDAS @ Inria . FR

- Who
- Setup
- Exact sampling

2 MCMC sampling

- Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

Introduction

- Who
- Setup
- Exact sampling

MCMC sampling Sampling algorithms

- Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

Acceptance-rejection sampling

- Let $\pi(x) = f(x)/C$, $x \in \mathbb{R}^d$, where f(x) is an *unnormalized* density and $C \in \mathbb{R}$ a normalizing constant.
- Let h(x) a PDF that can be simulated by some known method and $f(x) \le kh(x)$, where $k \in \mathbb{R}$ is a constant.

To obtain a sample from $\pi(x)$,

- 1. Generate a candidate Z from h(x) and a value u from $\mathcal{U}(0,1)$.
- 2. If $u \leq f(Z)/kh(Z)$ return Z.
- 3. Otherwise goto 1.

[Flury: 1990]

Acceptance-rejection sampling Drawbacks

• Sampling/rejections techniques (sample from bounding box) *fail* in high dimensions

$$rac{{
m vol}({\it unit ball})}{{
m vol}({\it unit cube})}=O((1/d)^d)$$

A Geometric Random Walk starts at some interior point and at each step moves to a "neighboring" point, chosen according to some distribution depending only on the current point.

A Billiard Walk step.

Uniform sampling (via the Billiard Walk). A MCMC sampling algorithm applies on a continuous state space $K \subseteq \mathbb{R}^d$

- Starts at a point $x_0 \in K$.
- Being on x_i , we move to x_{i+1} , according to a transition kernel $p_x(A)$.
- The transition kernel of a MCMC algorithm is the probability to jump from x to a set A ⊆ K.
- For example $p_{X}(K) = 1$.

Markov Chain Monte Carlo sampling

To sample from a density $\pi(x)$ define a **random walk** on a continuous state space with a transition kernel $p_x(A)$ such that,

1. [Convergence]

$$\int_{P} \rho_{x}(A)\pi(x)dx = \int_{A} \pi(y)dy$$

Then $\pi(x)$ is called target density.

2. [Uniqueness] $\lim_{n\to\infty} p_x^n(A) = \int_A \pi(y) dy$, where

$$p_x^n(A) = \int_P p_x^{n-1}(y) p_y(A) dy,$$

the transition kernel of the n-th iteration.

[Chib, Greenberg: 1995] Understanding the Metropolis-Hastings Algorithm.

- Does the random walk converges asymptotically to the (uniform) distribution? (Correctness)
- How fast does it converge? (Equivalently) How many steps do we have to perform until we get a uniform point? (mixing time)
- Does the initial point of the walk affects the efficiency? (warm start)
- What is the cost per step of the random walk?
- Do we assume anything about K? (isotropic position, well rounded)

Ball walk

Ball Walk(K, p, δ, f): convex K ⊂ ℝ^d, p ∈ P, radius δ, f : ℝ^d → ℝ₊
1. Pick a uniform random point x in B(p, δ).
2. return x with probability min {1, f(x) / f(p)}; return p with the remaining probability.

If the density is not restricted in K, then it is the Metropolis-Hastings algorithm.

Hit-and-Run

Hit and $\operatorname{Run}(K, p, f)$: convex $K \subset \mathbb{R}^d$, point $p \in P$, $f : \mathbb{R}^d \to \mathbb{R}_+$

- 1. Pick uniformly a line ℓ through p.
- 2. **return** a random point on the chord $\ell \cap K$ chosen from the distribution $\pi_{\ell,f}$ restricted in $K \cap \ell$.

• **Q**: How do we compute $\ell \cap K$? Can we do it *exactly*?

- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- Pick a uniform direction v to define the trajectory. then the direction becomes v ← v − 2⟨v, s⟩.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.

- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- Pick a uniform direction v to define the trajectory. then the direction becomes v ← v − 2⟨v, s⟩.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.

- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- Pick a uniform direction v to define the trajectory. then the direction becomes v ← v − 2⟨v, s⟩.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.

- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- Pick a uniform direction v to define the trajectory. then the direction becomes v ← v − 2⟨v, s⟩.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.

- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- Pick a uniform direction v to define the trajectory. then the direction becomes v ← v − 2⟨v, s⟩.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.

- Uniform sampling from the hypercube $[-1,1]^{200}$ and projection to \mathbb{R}^3 .
- Rows: Ball Walk, Coordinate Directions Hit and Run, Random Directions Hit and Run, Billiard Walk.
- Columns: walk length, {1, 50, 100, 150, 200}

(Some of the) Limitations of BW and HnR

- Their mixing time is $\widetilde{O}(d^3)$ for log-concave distributions.
- Their performance is crucially affected by the starting point.
- Typically, we need a warm start. A distribution S is M-warm w.r.t. to the distribution Q, if

$$M = \sup_{A \in P} \frac{S(A)}{Q(A)}$$

• Better efficiency if the distribution is (approximately) isotropic. A distribution *Q* is is isotropic if

$$\mathbb{E}_Q[X] = 0$$
, and $\mathbb{E}_Q[XX^T] = I_d$

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms

Sampling and Spectrahedra

- Hamiltonian Monte Carlo
- Spectrahedta and Reflective Hamiltonian Monte Carlo
- Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

- Who
- Setup
- Exact sampling
- MCMC sampling
 Sampling algorithms
- Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
 - 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

Definition

Let $\pi(\mathbf{x}) \propto e^{-f(\mathbf{x})}$, where $f : \mathbb{R}^d \to \mathbb{R}$ is a convex function. $\pi(\mathbf{x})$ is called *log-concave (LC) probability density*.

- Let $\pi(\mathbf{x})$ be restricted to convex body $K \subset \mathbb{R}^d$.
- Important examples: Uniform, Gaussian, Boltzmann.

Another view of Billard Walk and Hit-and-Run

- Being at *p* ∈ *K*, HMC introduces an auxiliary random variable *ν* ∈ ℝ^d and generates samples from the joint density π(*p*, *ν*) = π(*ν*|*p*)π(*p*),
- Marginalize out \boldsymbol{v} , then recover the target dist. $\pi(\boldsymbol{p})$.
- Consider $\mathbf{v} \sim \mathcal{N}(0, I_d)$; PDF $\pi(\mathbf{p}, \mathbf{v}) = e^{-H(\mathbf{p}, \mathbf{v})}$ defines a Hamiltonian, $H(\mathbf{p}, \mathbf{v}) = -\log \pi(\mathbf{p}, \mathbf{v}) = -\log \pi(\mathbf{p}) + \frac{1}{2}|\mathbf{v}|^2$,

Hamiltonian Monte Carlo

- HMC simulates a particle moving in a conservative field determined by − log π(p) and −∇ log π(p).
- HMC, starting from a position **p**, generates a new state:
 - 1. Draw a value for the momentum, $oldsymbol{v} \sim \mathcal{N}(0, \mathit{I_d})$
 - 2. $(\boldsymbol{p}, \boldsymbol{v})$ is given by the Hamilton's system of ODE:

$$\frac{d\boldsymbol{p}}{dt} = \frac{\partial H(\boldsymbol{p}, \boldsymbol{v})}{\partial \boldsymbol{v}} \Rightarrow \begin{cases} \frac{d\boldsymbol{p}(t)}{dt} = \boldsymbol{v}(t) \\ \frac{d\boldsymbol{v}}{dt} = -\frac{\partial H(\boldsymbol{p}, \boldsymbol{v})}{\partial \boldsymbol{p}} \end{cases} \Rightarrow \begin{cases} \frac{d\boldsymbol{v}(t)}{dt} = -\nabla \log \pi(\boldsymbol{p}) \end{cases}$$
(1)

- Solve the ODE using
 - Euler methods (e.g., Leapfrog) [Neal: 2012] or,
 - Collocation method [Vempala,Lee,Song : 2018].

- Usually we use the **leapfrog method**.
- It is a variant of Euler's method:

$$\mathbf{v}(t + \epsilon/2) = \mathbf{v}(t) + (\epsilon/2)\nabla \log(\pi(\mathbf{p}(t)))$$

$$\mathbf{p}(t + \epsilon) = \mathbf{p}(t) + \epsilon \mathbf{v}(t + \epsilon/2)$$

$$\mathbf{v}(t + \epsilon) = \mathbf{v}(t + \epsilon/2) + (\epsilon/2)\nabla \log(\pi(\mathbf{p}(t + \epsilon)))$$
(2)

Question

What is the bit complexity of leapfrog in our setting?

• If the density is restricted in *K*, then the trajectories of HMC are in *K*.

Random walks for truncated log-concave sampling

Year & Authors	Random walk	Mixing time*	Distribution
[Smith: 1986]	Hit-and-Run	$\widetilde{O}(d^3)$	any LC
[Berbee, Smith: 1987]	Coordinate Hit-and-Run	$\widetilde{O}(d^{10})$	any LC
[Lovasz,Simonovits'90]	Ball walk	$\tilde{O}(d^3)$	any LC
[Kannan,Narayanan'12]	Dikin walk	$\tilde{O}(d^2)$	uniform (H-polytope)
[Polyak,Dabbene'14]	Billiard walk	??	uniform
[Afshar,Domke'15]	Reflective HMC	??	any LC (polytopes)
[Lee, Vempala'16]	Geodesic walk	$O(md^{3/4})$	uniform (H-polytope)
[Lee, Vempala' 17]	Remannian HMC	$\widetilde{O}(md^{2/3})$	uniform (H-polytopes)
[Chen,Dwivedi,Wainwright,Yu'19]	John walk	$\widetilde{O}(d^{5/2})$	uniform (H-polytope)
[Chen,Dwivedi,Wainwright,Yu'19]	Vaidya walk	$O(m^{1/2}d^{3/2})$	uniform (H-polytope)

- Cost per sample: cost per step \times mixing time (#steps).
- The cost per step depends on the convex body.
- Hit-and-Run (HR): widely used & well studied.
- Coordinate Hit-and-Run (CDHR): seems more efficient than HR in practice.
- Existing software uses either CDHR or HR (H-polytopes).

- Who
- Setup
- Exact sampling
- MCMC sampling
 Sampling algorithms
- Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
 - 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

Definition

A spectrahedron $S \subset \mathbb{R}^d$ is the feasible set of a linear matrix inequality. If A_i are symmetric matrices in $\mathbb{R}^{m \times m}$ and

$$F(\mathbf{x}) = \mathbf{A}_0 + x_1 \mathbf{A}_1 + \cdots + x_d \mathbf{A}_d,$$

then $S = \{ \boldsymbol{x} \in \mathbb{R}^d \mid F(\boldsymbol{x}) \succeq 0 \}.$

S is the feasible set of a Semidefinite Program (SDP)

Reflective Hamiltonian Monte Carlo (ReHMC)

• When the density is restricted in a convex body *K* then HMC trajectory stays inside *K* by using boundary reflections.

Case of Leapfrog method

 $\pi(x)$

Discrete Hamiltonian trajectory

We pre-select the number of Leapfrog steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

It converges to the target distribution when K is a spectrahedron.

Reflective Hamiltonian Monte Carlo (ReHMC)

• When the density is restricted in a convex body *K* then HMC trajectory stays inside *K* by using boundary reflections.

Case of collocation method

Polynomial Hamiltonian trajectory

We randomly select the integration time in each steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

For a smoothly differentiable negative log-density f, where $\pi \propto \exp(-f(x))$, the discretized reflective Hamiltonian Dynamics are volume-preserving and time-reversible.

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms

Sampling and Spectrahedra

- Hamiltonian Monte Carlo
- Spectrahedta and Reflective Hamiltonian Monte Carlo
- Geometric Predicates and Algebraic Algorithms
- About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

For (almost) all geometric random walks we need:

- Membership oracle
- Boundary (intersection) oracle
- Reflection oracle

Membership oracle

MEMBERSHIP(F, p): An LMI $F(x) \succeq 0 \Leftrightarrow A_0 + x_1A_1 + \cdots + x_dA_d \succeq 0$ representing a spectrahedron S and a point $p \in \mathbb{R}^d$.

1. $\lambda_{min} \leftarrow$ smallest eigenvalue of F(p).

2. if $\lambda_{min} \geq 0$ return TRUE else return FALSE.

Boundary oracle

INTERSECTION(
$$F$$
, $\Phi(t)$):
An LMI $F(\mathbf{x}) \succeq 0 \Leftrightarrow \mathbf{A}_0 + x_1\mathbf{A}_1 + \dots + x_d\mathbf{A}_d \succeq 0$ for a spectrahedron S ,
 $\Phi : t \mapsto \Phi(t) := (p_1(t), \dots, p_d(t))$ parameterization of a polynomial curve,
where $p_i(t) = \sum_{j=0}^{n_i} p_{i,j} t^j$, and $\Phi(\mathbf{0}) \in S$.
1. Solve the polynomial eigenvalue problem
 $F(\Phi(t)) \mathbf{x} = 0 \Leftrightarrow (\mathbf{B}_0 + t\mathbf{B}_1 + \dots + t^d\mathbf{B}_d)\mathbf{x} = 0$,
where $\mathbf{B}_k = \sum_{j=1}^d p_{j,k} \mathbf{A}_j$
2. Smallest positive and largest negative eigenvalues $\lambda_{max}^-, \lambda_{min}^+$
3. return the boundary points $F(\Phi(\lambda_{max}^-))$ and $F(\Phi(\lambda_{min}^+))$

Reflection oracle

REFLECTION $(\mathbf{F}, \Phi(t), \lambda_+)$: An LMI $\mathbf{F}(\mathbf{x}) \succeq 0 \Leftrightarrow \mathbf{A}_0 + x_1\mathbf{A}_1 + \dots + x_d\mathbf{A}_d \succeq 0$ for spectrahedron S, $\Phi(t)$ parameterization of a polynomial curve, λ_+ s.t. $\Phi(\lambda_+) \in \partial S$ 1. Let the boundary point $\mathbf{p}_+ = \Phi(\lambda_+)$ 2. Let $\mathbf{w} = \nabla \det(\mathbf{F}(\mathbf{p}_+)) = c \cdot (\mathbf{s}^\top \mathbf{A}_1 \mathbf{s}, \dots, \mathbf{s}^\top \mathbf{A}_d \mathbf{s})$, \mathbf{s} vector in the kernel of $\mathbf{F}(\mathbf{p}_+)$ 3. return the direction of the reflection $\mathbf{s}_+ \leftarrow \frac{d\Phi}{dt}(t_+) - 2 \langle \nabla \frac{d\Phi}{dt}(t_+), \mathbf{w} \rangle \mathbf{w}$

Random walk	per-step Complexity			
HR	$\mathcal{O}(m^\omega + m\log(1/\epsilon) + dm^2)$			
Coordinate HR	$\mathcal{O}(m^\omega + m\log(1/\epsilon) + m^2)$			
Billiard walk	$\widetilde{\mathcal{O}}(ho({\it m}^\omega+{\it m}\log(1/\epsilon)+{\it d}{\it m}^2))$			
ReHMC (collocation)	$\widetilde{\mathcal{O}}(ho((\mathit{nm})^\omega + \mathit{mn}\log(1/\epsilon) + \mathit{dnm}^2))$			
ReHMC (leapfrog)	$\widetilde{\mathcal{O}}(L ho(m^\omega+m\log(1/\epsilon)+dm^2))$			

[Chalkis,Fisikopoulos,Repouskos,T: 2019] [Chalkis,Emiris,Fisikopoulos,Repouskos,T: 2020]

- m: size of the matrices A_i in LMI
- d: dimension
- n: degree of the polynomial curve
- ρ : number of reflections
- $\epsilon:$ accuracy to approximate the intersection with the boundary
- $\omega:$ exponent in the complexity of matrix multiplication
- L: number of leapfrog steps

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms

4 About "Applications"

- SDP and cutting planes
- SDP and Simulated Annealing
- Volume approximation
- Sampling on the boundary (surface)

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

• Input: convex body K, objective function c.

- Input: convex body *K*, objective function *c*.
- Sample N points under the uniform distribution.

- Input: convex body *K*, objective function *c*.
- Sample N points under the uniform distribution.
- Find the point x minimizing the objective function.

- Input: convex body K, objective function c.
- Sample N points under the uniform distribution.
- Find the point x minimizing the objective function.
- Cut the convex body at x.

- Input: convex body K, objective function c.
- Sample N points under the uniform distribution.
- Find the point x minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.

- Input: convex body K, objective function c.
- Sample N points under the uniform distribution.
- Find the point x minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.

- Input: convex body K, objective function c.
- Sample N points under the uniform distribution.
- Find the point x minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.

Cutting planes

• Let $rB_d \subseteq K \subseteq RB_d$.

• The expected number of phases s.t. $|f_l - f^*| < \epsilon$ is,

$$I = \left\lceil \frac{1}{\ln(N+1)} d \ln(R/\epsilon) \right\rceil = \widetilde{O}(d)$$

- Total number of uniform points minimized for N = 1.
- Total cost,

$$\left[d \ln(R/\epsilon) \right] \times \text{ cost per point}$$

Only Hit&Run has been used up to now [Bertsimas, Vempala : 2010],[Dabbene, Shcherbakov, Polyak : 2010] ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020–]

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms
- 4 About "Applications"
 - SDP and cutting planes
 - SDP and Simulated Annealing
 - Volume approximation
 - Sampling on the boundary (surface)

SDP using Exponential sampling

Problem: Minimize $f(\mathbf{x}) = \mathbf{c}^T \mathbf{x}$ over a spectrahedron S.

Answer: Sample from $\pi(\mathbf{x}) \propto e^{-\mathbf{c}^T \mathbf{x}/T}$ restricted in *S*, for $T = T_0 > \cdots > T_M$.

Task: Compute a sequence of $T_i \in \mathbb{R}_+$ of length M s.t. a sample from π_{T_M} is close to the optimal solution with high probability.

Simulated Annealing Convergence to the optimal solution

- Starting with $T_0 = R$, where $S \subset R\mathcal{B}_d$ (uniform distribution).
- $T_i = T_{i-1}(1 \frac{1}{\sqrt{d}}), i \in [M]$ $(T_{i-1} \text{ is a warm start for } T_i).$
- $M = \widetilde{O}(\sqrt{d})$ phases to obtain a solution $|f_M f^*| \le \epsilon$
- Only Hit-and-Run has been used in previous work [Kalai, Vempala : 2006]. ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020–]

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms

4 About "Applications"

- SDP and cutting planes
- SDP and Simulated Annealing
- Volume approximation
- Sampling on the boundary (surface)

Computing the exact volume of P,

- is #P-hard for all the representations [DyerFrieze'88]
- is open if both H- and V- representations available
- is APX-hard (oracle model) [Elekes'86]

Theorem

[Dyer, Frieze, Kannan'91] For any convex body P and any $0 \le \epsilon$, $\delta \le 1$, there is a randomized algorithm which computes an estimate V s.t. with probability $1 - \delta$ we have $(1 - \epsilon)vol(P) \le V \le (1 + \epsilon)vol(P)$, and the number of oracle calls is $poly(d, 1/\epsilon, log(1/\delta))$.

Let a sequence of functions $\{f_0, \ \ldots, f_m\}$, $f_i : \mathbb{R}^d \to \mathbb{R}$. Then,

$$\operatorname{vol}(P) = \int_P dx = \int_P f_m(x) dx \ \frac{\int_P f_{m-1}(x) dx}{\int_P f_m(x) dx} \cdots \frac{\int_P f_0(x) dx}{\int_P f_1(x) dx} \ \frac{\int_P dx}{\int_P f_0(x) dx}$$

Then select f_i s.t.,

- The number of phases, *m*, is as small as possible.
- Each integral ratio can be efficiently estimated by sampling from $\pi \propto f_i$ restricted to *P* (using geometric random walks).
- There is a closed formula for $\int_P f_m(x) dx$.

complexity = #phases $\times \#$ points per phase \times cost per point

Authors-Year	Complexity (oracle calls)	f _i	random walk
[Dyer, Frieze, Kannan'91]	$\widetilde{O}(d^{23})$	Indicator function of a ball	grid walk
[Kannan, Lovasz, Simonovits'97]	$\widetilde{O}(d^5)$	Indicator function of a ball	ball walk
[Lovasz, Vempala'03]	$\widetilde{O}(d^4)$	Exponential	hit-and-run
[Cousins, Vempala'15]	$\widetilde{O}(d^3)$	Spherical Gaussians	ball walk

• Can not be implemented as they are due to large constants in the complexity and pessimistic theoretical bounds.

Practical algorithms:

- Follow the theory but make practical adjustments (experimental).
- [Emiris, Fisikopoulos'14] Sequence of balls + coordinate hit-and-run.
- [Cousins, Vempala'16] Spherical Gaussians + hit-and-run

Multiphase Monte Carlo

• Let $C_m \subseteq \cdots \subseteq C_1$ a sequence of concentric balls intersecting P, s.t. $C_m \subseteq P \subseteq C_1$.

• Construct a sequence of balls intersecting *P*, then:

$$\operatorname{vol}(P) = \operatorname{vol}(P \cap C_m) \frac{\operatorname{vol}(P \cap C_{m-1})}{\operatorname{vol}(P \cap C_m)} \cdots \frac{\operatorname{vol}(P \cap C_1)}{\operatorname{vol}(P \cap C_2)} \frac{\operatorname{vol}(P)}{\operatorname{vol}(P \cap C_1)}$$

$$m = \left\lceil d \lg \frac{R}{r} \right\rceil$$

Ratio estimation

- Estimate $r_i = \frac{\operatorname{vol}(P \cap C_{i+1})}{\operatorname{vol}(P \cap C_i)}$ within some target relative error ϵ_i .
- Sample N uniform points from $P_i = C_i \cap P$ and count points in $P_{i+1} = C_{i+1} \cap P \subseteq P_i$.

• Keep each ratio bounded, then $N = O(1/\epsilon_i^2)$ points suffices.

Does this approach work?

S-n-m	$\mu \pm t_{lpha, u-1} rac{s}{\sqrt{ u}}$	Points	Time (sec)	error
<i>S</i> -40-40	(1.34 ± 0.12) e-06	9975.2	6.7	??
<i>S</i> -60-60	(1.23 ± 0.11) e-20	20370.9	28.5	??
<i>S</i> -80-80	(4.24 ± 0.26) e-33	31539.1	124.4	??
<i>S</i> -100-100	(1.21 ± 0.10) e-51	52962.7	362.3	??
* <i>S</i> -28-8	14.31 ± 0.64	4547.4	10.2	0.05
* <i>S</i> -45-10	0.6334 ± 0.03	19558.1	56.2	0.07
* <i>S</i> -66-12	(1.73 ± 0.034) e-03	1.01e+05	324.2	0.07

Table: *m* is the matrix dimension in LMI and *n* the ambient dimension. The spectrahedra marked with "*" are elliptopes, μ stands for the average volume and *s* for the standard deviation. We give a confidence interval with level of confidence $\alpha = 0.05$, while $t_{\alpha,\nu-1}$ is the critical value of student's distribution with $\nu - 1$ degrees of freedom. Error parameter to e = 0.1.

- Who
- Setup
- Exact sampling
- 2 MCMC sampling
 - Sampling algorithms
- 3 Sampling and Spectrahedra
 - Hamiltonian Monte Carlo
 - Spectrahedta and Reflective Hamiltonian Monte Carlo
 - Geometric Predicates and Algebraic Algorithms

4 About "Applications"

- SDP and cutting planes
- SDP and Simulated Annealing
- Volume approximation
- Sampling on the boundary (surface)

Volatility detection

[Bachelard, Chalkis, Fisikopoulos, T : 2022]

Elias . TSIGARIDAS @ Inria . FR

- What is the arithmetic/bit complexity of producing one sample in a polytope/spectrahedron ϵ close to the uniform distribution? What about any log-concave distribution?
- What is the arithmetic/bit complexity of computing the volume of a polytope?
- What is the arithmetic/bit complecity of computing the volume of a spectrahedron?
- What is the arithmetic/bit complexity of putting a polytope/spectrahedron in almost isotropic position?
 What do we mean by almost?
- What is arithmetic/boolean complexity of LP and SDP using sampling and cutting planes?

https://geomscale.github.io

Clingo

 GeomScale/volesti volume approximation & sampling from convex bodies GeomScale/dingo analyze metabolic networks with MCMC sampling

Co-founders: Tolis Chalkis & Vissarion Fisikopoulos & E.T.

NUMFOCUS NumFOCUS Affiliated Project.

🖾 More than 15 000 lines of code.

Thank you!