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GeomScale org and collaborators
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Quantagonia Oracle Cornell
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Veni Arakelian, Cyril Bachelard, Ioannis Emiris, Haris Zafeiropoulos, ...
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(Truncated) distributions

Multivariate probability distribution with density function π(x)

Truncate π to a polytope P := {Ax ≤ b} we obtain p.d.f. πP

πP(x) =
f (x)π(x)∫
P π(x)dx

, f (x) =

{
1, if x ∈ P
0, if x /∈ P

The support is the polytope P and πP is the uniform ditribution over P.

In general the support is a convex body K ⊂ Rn
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Problem

Sample (efficiently?) from a (truncated) distribution with density πK ?

Interesting directions

Algorithms

Complexity bounds (which computational model? what do we measure?)

Take advantage of the geometry of support K ⊂ Rn

(non-linear, e.g., spectrahedron, basic semi-algebraic set)

Can we do better when n is small, e.g., n = 2, 3 ?

Applications
(Volume, integration, Bayesian inference, optimization, ...)
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Uniform Sampling from the hypersphere

To sample uniformly from the boundary of a hypersphere of radius r :
1. Sample d numbers g1, . . . , gd from N (0, 1).
2. The point v = r(g1, . . . , gd)/

√∑
g2
i is uniformly distributed on the

surface of the d-dim hypersphere, of radius r and center the origin.

To sample uniformly from the interior of a hypersphere with radius r :
1. Sample a point v ∼ U(∂Bd) and u ∼ U(0, 1).
2. The point p = ru1/dv is uniformly distributed in the interior of the

d-dim hypersphere, of radius r and center the origin.

To pick a random direction through point p ∈ Rd we sample from the surface of

a hypersphere centered at p.
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Uniform Sampling from the simplex

1. [Smith, Tromble: 2004]:
Generate distinct: x0 < x1 < · · · < xd+1 ∈ N∗.

Return y : yi =
xi − xi−1

M
, i = 1, . . . , d + 1. M: largest integer.

To guarantee distinct choice we use a variation of Bloom filter.
Sampling one point takes O(d log d).

2. [Rubinstein, Melamed: 1998]:
Generate independent unit-exponential random variables,
X1, · · · ,Xd+1. Return Y ∈ Rd+1: Yi = Xi/

∑d+1
i=1 Xi .

Sampling one point takes O(d).

Generalizations? e.g., Zontopes.
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Acceptance-rejection sampling

Let π(x) = f (x)/C , x ∈ Rd , where
f (x) is an unnormalized density and C ∈ R a normalizing constant.

Let h(x) a PDF that can be simulated by some known method and
f (x) ≤ kh(x), where k ∈ R is a constant.

To obtain a sample from π(x),

1. Generate a candidate Z from h(x) and a value u from U(0, 1).
2. If u ≤ f (Z )/kh(Z ) return Z.

3. Otherwise goto 1.

[Flury: 1990]
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Acceptance-rejection sampling
Drawbacks

Sampling/rejections techniques (sample from bounding box)
fail in high dimensions

vol(unitball)
vol(unitcube) = O((1/d)d)
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Geometric Random Walks

A Geometric Random Walk starts at some interior point and at each
step moves to a ”neighboring” point, chosen according to some

distribution depending only on the current point.

A Billiard Walk step.
Uniform sampling
(via the Billiard Walk).
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Markov Chain Monte Carlo sampling

A MCMC sampling algorithm applies on a continuous state space K ⊆ Rd

Starts at a point x0 ∈ K .

Being on xi , we move to xi+1, according to a transition kernel px(A).

The transition kernel of a MCMC algorithm is
the probability to jump from x to a set A ⊆ K .

For example px(K ) = 1.
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Markov Chain Monte Carlo sampling

To sample from a density π(x) define a random walk on a continuous
state space with a transition kernel px(A) such that,

1. [Convergence] ∫
P
px(A)π(x)dx =

∫
A
π(y)dy

Then π(x) is called target density.

2. [Uniqueness] limn→∞ pnx (A) =
∫
A π(y)dy , where

pnx (A) =

∫
P
pn−1
x (y)py (A)dy ,

the transition kernel of the n-th iteration.

[Chib, Greenberg: 1995] Understanding the Metropolis-Hastings Algorithm.
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Useful questions and terminology

Does the random walk converges asymptotically to
the (uniform) distribution? (Correctness)

How fast does it converge?
(Equivalently) How many steps do we have to perform until we get a
uniform point? (mixing time)

Does the initial point of the walk affects the efficiency? (warm start)

What is the cost per step of the random walk?

Do we assume anything about K? (isotropic position, well rounded)
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Ball walk

Ball Walk(K , p, δ, f ): convex K ⊂ Rd , p ∈ P, radius δ, f : Rd → R+

1. Pick a uniform random point x in B(p, δ).

2. return x with probability min

{
1, f (x)f (p)

}
;

return p with the remaining probability.

B

p

q

If the density is not restricted in K, then it is the Metropolis-Hastings algorithm.
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Hit-and-Run

Hit and Run(K , p, f ): convex K ⊂ Rd , point p ∈ P, f : Rd → R+

1. Pick uniformly a line ℓ through p.

2. return a random point on the chord ℓ ∩ K chosen from the
distribution πℓ,f restricted in K ∩ ℓ.

`

p

q

`

p q

Q: How do we compute ℓ ∩ K? Can we do it exactly?

Elias . TSIGARIDAS @ Inria . FR Sampling from spectrahedra 20 / 62



Billiard walk - Uniform case

BW(K , pi , τ,R) [Polyak’14]

1. Generate the length of the trajectory L = −τ ln η, η ∼ U(0, 1).

2. Pick a uniform direction v to define the trajectory. then the direction
becomes v ← v − 2⟨v , s⟩.

3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,

4. return the end of the trajectory as pi+1.
If the number of reflections exceeds R, then return pi+1 = pi .
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Uniform sampling from the hypercube [−1, 1]200 and projection to R3.

Rows: Ball Walk, Coordinate Directions Hit and Run, Random
Directions Hit and Run, Billiard Walk.

Columns: walk length, {1, 50, 100, 150, 200}
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(Some of the) Limitations of BW and HnR

Their mixing time is Õ(d3) for log-concave distributions.

Their performance is crucially affected by the starting point.

Typically, we need a warm start.
A distribution S is M-warm w.r.t. to the distribution Q, if

M = sup
A∈P

S(A)

Q(A)

Better efficiency if the distribution is (approximately) isotropic.
A distribution Q is is isotropic if

EQ [X ] = 0, and EQ [XX
T ] = Id
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Truncated log-concave sampling

Definition

Let π(x) ∝ e−f (x), where f : Rd → R is a convex function.
π(x) is called log-concave (LC) probability density.

Let π(x) be restricted to convex body K ⊂ Rd .

Important examples: Uniform, Gaussian, Boltzmann.



Another view of Billard Walk and Hit-and-Run
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Hamiltonian Monte Carlo

Being at p ∈ K , HMC introduces an auxiliary random variable
v ∈ Rd and generates samples from the joint density

π(p, v) = π(v |p)π(p),

Marginalize out v , then recover the target dist. π(p).
Consider v ∼ N (0, Id);
PDF π(p, v) = e−H(p,v) defines a Hamiltonian,

H(p, v) = − log π(p, v) = − log π(p) +
1

2
|v |2,



Hamiltonian Monte Carlo

HMC simulates a particle moving in a conservative field determined
by − log π(p) and −∇ log π(p).

HMC, starting from a position p, generates a new state:

1. Draw a value for the momentum, v ∼ N (0, Id)
2. (p, v) is given by the Hamilton’s system of ODE:

dp
dt

=
∂H(p, v)

∂v
dv
dt

= −∂H(p, v)
∂p

⇒


dp(t)
dt = v(t)

dv(t)
dt = −∇ log π(p)

(1)

Solve the ODE using
– Euler methods (e.g., Leapfrog) [Neal: 2012] or,
– Collocation method [Vempala,Lee,Song : 2018].



Solving the ODE

Usually we use the leapfrog method.

It is a variant of Euler’s method:

v(t + ϵ/2) = v(t) + (ϵ/2)∇ log(π(p(t)))

p(t + ϵ) = p(t) + ϵv(t + ϵ/2)

v(t + ϵ) = v(t + ϵ/2) + (ϵ/2)∇ log(π(p(t + ϵ)))

(2)

Question

What is the bit complexity of leapfrog in our setting?
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Hamiltonian Monte Carlo

If the density is restricted in K , then the trajectories of HMC are in K .
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Random walks for
truncated log-concave sampling

Year & Authors Random walk Mixing time∗ Distribution

[Smith: 1986] Hit-and-Run Õ(d3) any LC

[Berbee, Smith: 1987] Coordinate Hit-and-Run Õ(d10) any LC

[Lovasz,Simonovits’90] Ball walk Õ(d3) any LC

[Kannan,Narayanan’12] Dikin walk Õ(d2) uniform (H-polytope)
[Polyak,Dabbene’14] Billiard walk ?? uniform
[Afshar,Domke’15] Reflective HMC ?? any LC (polytopes)

[Lee,Vempala’16] Geodesic walk O(md3/4) uniform (H-polytope)

[Lee,Vempala’17] Remannian HMC Õ(md2/3) uniform (H-polytopes)

[Chen,Dwivedi,Wainwright,Yu’19] John walk Õ(d5/2) uniform (H-polytope)

[Chen,Dwivedi,Wainwright,Yu’19] Vaidya walk O(m1/2d3/2) uniform (H-polytope)

Cost per sample: cost per step × mixing time (#steps).

The cost per step depends on the convex body.

Hit-and-Run (HR): widely used & well studied.

Coordinate Hit-and-Run (CDHR): seems more efficient than HR in practice.

Existing software uses either CDHR or HR (H-polytopes).
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Definition

A spectrahedron S ⊂ Rd is the feasible set of a linear matrix
inequality. If Ai are symmetric matrices in Rm×m and

F (x) = A0 + x1A1 + · · ·+ xdAd ,

then S = {x ∈ Rd |F (x) ⪰ 0}.

S is the feasible set of a Semidefinite Program (SDP)



Reflective Hamiltonian Monte Carlo (ReHMC)

When the density is restricted in a convex body K then HMC
trajectory stays inside K by using boundary reflections.

Case of Leapfrog method

π(x) Discrete Hamiltonian trajectory

We pre-select the number of Leapfrog steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

It converges to the target distribution when K is a spectrahedron.



Reflective Hamiltonian Monte Carlo (ReHMC)

When the density is restricted in a convex body K then HMC
trajectory stays inside K by using boundary reflections.

Case of collocation method

π(x)
Polynomial Hamiltonian

trajectory

We randomly select the integration time in each steps

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.



Correctness of ReHMC

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

For a smoothly differentiable negative log-density f , where
π ∝ exp(−f (x)), the discretized reflective Hamiltonian Dynamics are
volume-preserving and time-reversible.

Theorem ([Chalkis, Fisikopoulos, Papachristou, T : 2021])

ReHMC converges to the target distribution when K is a spectrahedron.
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Geometric and algebraic oracles

For (almost) all geometric random walks we need:

Membership oracle

Boundary (intersection) oracle

Reflection oracle



Membership oracle

membership(F ,p): An LMI F (x) ⪰ 0 ⇔ A0 + x1A1 + · · · + xdAd ⪰ 0
representing a spectrahedron S and a point p ∈ Rd .

1. λmin ← smallest eigenvalue of F (p).

2. if λmin ≥ 0 return true else return false.



Boundary oracle

intersection(F ,Φ(t)):
An LMI F (x) ⪰ 0⇔ A0 + x1A1 + · · ·+ xdAd ⪰ 0 for a spectrahedron S ,
Φ : t 7→ Φ(t) := (p1(t), . . . , pd(t)) parameterization of a polynomial curve,
where pi (t) =

∑ni
j=0 pi,j t

j , and Φ(0) ∈ S .

1. Solve the polynomial eigenvalue problem

F (Φ(t)) x = 0⇔ (B0 + tB1 + · · ·+ tdBd)x = 0,

where Bk =
∑d

j=1 pj,k Aj

2. Smallest positive and largest negative eigenvalues λ−
max , λ

+
min

3. return the boundary points F (Φ(λ−
max)) and F (Φ(λ+

min))



Reflection oracle

reflection(F ,Φ(t), λ+):
An LMI F (x) ⪰ 0⇔ A0 + x1A1 + · · ·+ xdAd ⪰ 0 for spectrahedron S ,

Φ(t) parameterization of a polynomial curve, λ+ s.t. Φ(λ+) ∈ ∂S

1. Let the boundary point p+ = Φ(λ+)

2. Let w = ∇ det(F (p+)) = c · (s⊤A1s, · · · , s⊤Ads),
s vector in the kernel of F (p+)

3. return the direction of the reflection
s+ ← dΦ

dt (t+)− 2 ⟨∇ dΦ
dt (t+),w⟩w



Per-step complexity

Random walk per-step Complexity

HR O(mω +m log(1/ϵ) + dm2)

Coordinate HR O(mω +m log(1/ϵ) +m2)

Billiard walk Õ(ρ(mω +m log(1/ϵ) + dm2))

ReHMC (collocation) Õ(ρ((nm)ω +mn log(1/ϵ) + dnm2))

ReHMC (leapfrog) Õ(Lρ(mω +m log(1/ϵ) + dm2))
[Chalkis,Fisikopoulos,Repouskos,T: 2019]

[Chalkis,Emiris,Fisikopoulos,Repouskos,T: 2020]

m: size of the matrices Ai in LMI
d : dimension
n: degree of the polynomial curve
ρ: number of reflections
ϵ: accuracy to approximate the intersection with the boundary
ω: exponent in the complexity of matrix multiplication

L: number of leapfrog steps
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Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

Input: convex body K , objective function c.

Sample N points under the uniform distribution.

Find the point x minimizing the objective function.

Cut the convex body at x .

Repeat I times.
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Cutting planes

Let rBd ⊆ K ⊆ RBd .

The expected number of phases s.t. |fI − f ∗| < ϵ is,

I =

⌈
1

ln(N + 1)
d ln(R/ϵ)

⌉
= Õ(d)

Total number of uniform points minimized for N = 1.

Total cost, ⌈
d ln(R/ϵ)

⌉
× cost per point

Only Hit&Run has been used up to now
[Bertsimas, Vempala : 2010],[Dabbene, Shcherbakov, Polyak : 2010]

ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020–]
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SDP using Exponential sampling

Problem: Minimize f (x) = cTx over a spectrahedron S .

Answer: Sample from π(x) ∝ e−cT x/T restricted in S , for
T = T0 > · · · > TM .

T0 T1 T2 T3

Task: Compute a sequence of Ti ∈ R+ of length M s.t. a
sample from πTM

is close to the optimal solution
with high probability.



Simulated Annealing
Convergence to the optimal solution

πi (x) ∝ e−cT x/Ti

Starting with T0 = R, where S ⊂ RBd (uniform distribution).

Ti = Ti−1(1− 1√
d
), i ∈ [M] (Ti−1 is a warm start for Ti ).

M = Õ(
√
d) phases to obtain a solution |fM − f ∗| ≤ ϵ

Only Hit-and-Run has been used in previous work [Kalai, Vempala : 2006].

ongoing [Chalkis, Fisikopoulos, Papachristou, T : 2020–]
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Volume
Complexity

Computing the exact volume of P,

is #P-hard for all the representations [DyerFrieze’88]

is open if both H- and V- representations available

is APX-hard (oracle model) [Elekes’86]
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Randomized approximation algorithms
Multiphase Monte Carlo

Theorem

[Dyer, Frieze, Kannan’91] For any convex body P and any 0 ≤ ϵ, δ ≤ 1,
there is a randomized algorithm which computes an estimate V s.t. with
probability 1− δ we have (1− ϵ)vol(P) ≤ V ≤ (1 + ϵ)vol(P), and the
number of oracle calls is poly(d , 1/ϵ, log(1/δ)).
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Multiphase Monte Carlo

Let a sequence of functions {f0, . . . , fm}, fi : Rd → R. Then,

vol(P) =

∫
P
dx =

∫
P
fm(x)dx

∫
P fm−1(x)dx∫
P fm(x)dx

· · ·
∫
P f0(x)dx∫
P f1(x)dx

∫
P dx∫

P f0(x)dx

Then select fi s.t.,

The number of phases, m, is as small as possible.

Each integral ratio can be efficiently estimated by sampling from
π ∝ fi restricted to P (using geometric random walks).

There is a closed formula for
∫
P fm(x)dx .

complexity = #phases × #points per phase × cost per point
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State-of-the-art

Authors-Year
Complexity

fi random walk
(oracle calls)

[Dyer, Frieze, Kannan’91] Õ(d23)
Indicator function

grid walk
of a ball

[Kannan, Lovasz, Simonovits’97] Õ(d5)
Indicator function

ball walk
of a ball

[Lovasz, Vempala’03] Õ(d4) Exponential hit-and-run

[Cousins, Vempala’15] Õ(d3) Spherical Gaussians ball walk

Can not be implemented as they are due to large constants in the
complexity and pessimistic theoretical bounds.

Practical algorithms:

Follow the theory but make practical adjustments (experimental).

[Emiris, Fisikopoulos’14] Sequence of balls + coordinate hit-and-run.

[Cousins, Vempala’16] Spherical Gaussians + hit-and-run
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Multiphase Monte Carlo

Let Cm ⊆ · · · ⊆ C1 a sequence of concentric balls intersecting P, s.t.
Cm ⊆ P ⊆ C1.

Construct a sequence of balls intersecting P, then:

vol(P) = vol(P ∩ Cm)
vol(P ∩ Cm−1)

vol(P ∩ Cm)
· · · vol(P ∩ C1)

vol(P ∩ C2)

vol(P)

vol(P ∩ C1)

m = ⌈d lg R
r ⌉
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Ratio estimation

Estimate ri =
vol(P∩Ci+1)

vol(P∩Ci )
within some target relative error ϵi .

Sample N uniform points from Pi = Ci ∩ P and count points in
Pi+1 = Ci+1 ∩ P ⊆ Pi .

Keep each ratio bounded, then N = O(1/ϵ2i ) points suffices.
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Does this approach work?

S-n-m µ± tα,ν−1
s√
ν

Points Time (sec) error

S-40-40 (1.34± 0.12)e-06 9975.2 6.7 ??

S-60-60 (1.23± 0.11)e-20 20370.9 28.5 ??

S-80-80 (4.24± 0.26)e-33 31539.1 124.4 ??

S-100-100 (1.21± 0.10)e-51 52962.7 362.3 ??

*S-28-8 14.31± 0.64 4547.4 10.2 0.05

*S-45-10 0.6334± 0.03 19558.1 56.2 0.07

*S-66-12 (1.73± 0.034)e-03 1.01e+05 324.2 0.07

Table: m is the matrix dimension in LMI and n the ambient dimension. The
spectrahedra marked with ”*” are elliptopes, µ stands for the average volume and
s for the standard deviation. We give a confidence interval with level of
confidence α = 0.05, while tα,ν−1 is the critical value of student’s distribution
with ν − 1 degrees of freedom. Error parameter to e = 0.1.
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Volatility detection

[Bachelard, Chalkis, Fisikopoulos, T : 2022]
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(IMO) Some very interesting questions

What is the arithmetic/bit complexity of producing one sample in a
polytope/spectrahedron ϵ close to the uniform distribution?
What about any log-concave distribution?

What is the arithmetic/bit complexity of computing the volume of a polytope?

What is the arithmetic/bit complecity of computing the volume of a
spectrahedron?

What is the arithmetic/bit complexity of putting a polytope/spectrahedron in
almost isotropic position?
What do we mean by almost?

What is arithmetic/boolean complexity of LP and SDP
using sampling and cutting planes?
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GeomScale org
https://geomscale.github.io

– GeomScale/volesti
volume approximation & sampling

from convex bodies

– GeomScale/dingo
analyze metabolic networks with

MCMC sampling

Co-founders: Tolis Chalkis & Vissarion Fisikopoulos & E.T.————————————————————————————
NumFOCUS Affiliated Project.

Support from an open community.

More than 15 000 lines of code. Thank you!
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