Central Limit Theorems for Stochastic Gradient Descent

Zehua Lai

University of Chicago, CAM laizehua@uchicago.edu joint work with Xi Chen, He Li, Yichen Zhang

April, 2023

Zehua Lai (U of Chicago, CAM)

April, 2023 1 / 50

- 1 A Quick Introduction to Statistical Inference
- 2 Gradient-free Optimization
- 3 Statistical Inference for Gradient-free Optimization
- 4 Contextual Bandit Optimization
- 5 Statistical Inference in Contextual Bandit Optimization

1 A Quick Introduction to Statistical Inference

- 2 Gradient-free Optimization
- 3 Statistical Inference for Gradient-free Optimization
- 4 Contextual Bandit Optimization
- 5 Statistical Inference in Contextual Bandit Optimization

If we have n samples of a random variable X, can we estimate the expectation of X?

Answer: $\bar{X}_n := \frac{1}{n} \sum X_i$.

A Quick Introduction to Statistical Inference

Online updates:
$$\bar{X}_{n+1} = \frac{1}{n+1} \sum X_i = \frac{1}{n+1} X_{n+1} + \frac{n}{n+1} \bar{X}_n$$
.

Theorem

 \bar{X}_n is unbiased, consistent.

$$\sqrt{n}(\bar{X}_n - \mathbb{E}X) \Rightarrow N(0, V)$$
, where $V = \mathbb{E}(X - \mathbb{E}X)(X - \mathbb{E}X)^{\top}$.

How to estimate V?

∃ ⊳.

Answer:
$$V_n = \frac{1}{n} \sum (X_i - \bar{X}_n) (X_i - \bar{X}_n)^{\top}$$
.

Exercise: try to write down formulas for update it online (iteratively).

Theorem

 V_n is biased, consistent.

Now given a direction u, consider $u^{\top}\sqrt{n}(\bar{X}_n - \mathbb{E}X)$. It converges to $N(0, u^{\top}Vu)$. So the probability that $u^{\top}\sqrt{n}(\bar{X}_n - \mathbb{E}X)$ is in the interval $[-2\sqrt{u^{\top}Vu}, 2\sqrt{u^{\top}Vu}]$ is around 95%.

$$\Pr\{\sqrt{n}u^{\top}\mathbb{E}X \in [\sqrt{n}u^{\top}\bar{X}_n - 2\sqrt{u^{\top}V_nu}, \sqrt{n}u^{\top}\bar{X}_n + 2\sqrt{u^{\top}V_nu}]\} \approx 95\%.$$

Consider the following minimization problem,

minimize
$$L(\theta) := \mathbb{E}_{\zeta \sim P} \left[\ell(\theta; \zeta) \right].$$

We are able to query the sample gradient $\nabla \ell(\theta; \zeta)$, not the full gradient $\nabla L(\theta)$.

What is the *most efficient* way to minimize?

Answer: Stochastic gradient descent with Polyak-Juditsky averaging.

Start from an arbitrary point θ_0 . At each step, we compute:

$$\theta_n = \theta_{n-1} - \eta_n \nabla \ell(\theta_{n-1}; \zeta_n),$$

where the step size $\eta_n = \eta_0 n^{-\alpha}, \frac{1}{2} < \alpha < 1$.

We can then define the final Polyak-Juditsky averaging estimator as

$$\overline{\theta}_n = \frac{1}{n} \sum_{i=1}^n \theta_i.$$

Theorem (Polyak-Juditsky¹)

Assume the function $L(\theta)$ is strongly convex with global minimizer θ_* . Assume covariance of the sample gradient has enough regularity. Define H, S by

$$H :=
abla^2 L(heta_*), \ \ \mathcal{S} := \mathbb{E}\left[
abla \ell(heta_*; \zeta)
abla \ell(heta_*; \zeta)^{ op}
ight]$$

Then we have a central limit theorem

$$\sqrt{n} \ \left(\overline{\theta}_n - \theta_*\right) \Rightarrow \mathcal{N}\left(\mathbf{0}, H^{-1}SH^{-1}\right), \qquad \text{as} \quad n \to \infty.$$

The choice of η_0, α does not affect the result.

¹Polyak and Juditsky, SIAM journal on control and optimization (1992). Zehua Lai (U of Chicago, CAM) April, 2023 9/50 Consider the case of least square linear regression: $I(\theta) = (y - \theta^{\top} X)^2$. $y = \theta_*^{\top} X + \zeta$. Now the gradient step is:

$$\theta_n = \theta_{n-1} - \eta_n (XX^\top (\theta_{n-1} - \theta_*) + X\zeta_n).$$

Make the harmless assumption $\theta_* = 0$. This becomes:

$$\theta_n = \theta_{n-1} - \eta_n (A\theta_{n-1} + \xi_n(\theta_{n-1})),$$

where $A = \mathbb{E}[XX^{\top}], \xi_n(\theta) = (XX^{\top} - A)\theta + X\zeta_n$.

After some clever algebraic manipulation, we can even prove that

$$\sqrt{n}\bar{\theta}_n = \sqrt{n}H^{-1}\bar{\xi}_n(0) + \text{residual terms}\dots$$

The residual terms go to 0.

Hájek-Le Cam local asymptotic minimax theorem: SGD with Polyak-Juditsky averaging achieves optimal rates asymptotically.

This rate is also called the Cramer-Rao lower bound.

Two variant: gradient-free optimization and contextual bandit optimization.

1 A Quick Introduction to Statistical Inference

2 Gradient-free Optimization

3 Statistical Inference for Gradient-free Optimization

4 Contextual Bandit Optimization

5 Statistical Inference in Contextual Bandit Optimization

What is Gradient-free Optimization/Zeroth Order Optimization?

Again, we still want to solve the problem

minimize $L(\theta) := \mathbb{E}_{P} \left[\ell(\theta; \zeta) \right].$

However, we now only have the access to the sample function value $\ell(\theta; \zeta)$, not the sample gradient $\nabla \ell(\theta; \zeta)$.

Let us consider several different cases:

(i) At each step, we can evaluate the function once and get $\ell(\theta; \zeta_n)$.

(ii) At each step, we can evaluate the function twice and get $\ell(\theta_1; \zeta_n), \ell(\theta_2; \zeta_n)$.

(iii) For each step, we can evaluate the function *m* times and get $\ell(\theta_1; \zeta_n), \ldots, \ell(\theta_m; \zeta_n)$.

(i) In this case, CLT rate is impossible. 2

(ii) (iii) Those two cases are similar. They will be our main focus.

²Flaxman et al., SODA (2005). Agarwal et al., NeuIPS (2011) \rightarrow \leftarrow = \rightarrow

The simplest idea to solve (ii) (iii) is the Kiefer-Wolfowitz (KW) algorithm (finite difference).

We can use finite difference to approximate the gradient.

Given a direction v, a spacing parameter h, our two-point estimator of gradient is

$$\widehat{g}_{h,v}(heta;\zeta) = rac{1}{h} \Delta_{h,v} \ell(heta;\zeta) v := rac{\ell(heta + hv;\zeta) - \ell(heta;\zeta)}{h} v.$$

This is almost the same thing as $vv^{\top}\nabla \ell(\theta; \zeta)$.

Given *m* direction v_1, \ldots, v_m , a spacing parameter *h*, our m + 1-point estimator of gradient is

$$\widehat{g}_{h,\nu}(\theta;\zeta) = \sum_{i=1}^m \frac{1}{h} \Delta_{h,\nu_i} \ell(\theta;\zeta) v_i.$$

★ ∃ ▶

This finite difference idea does not work if we can only evaluate once per iteration.

We need to specify two hyperparameters: the spacing parameter h and the distribution of the finite difference direction v.

Choosing *h* is easy. We can use $h_n = h_0 n^{-\gamma}, \frac{1}{2} < \gamma < 1$.

Choosing v is tricky. Obvious requirement: $\mathbb{E}v = 0, \mathbb{E}vv^{\top} = I_d$.

- (G) Gaussian: $v \sim \mathcal{N}(0, I)$.
- (S) Spherical: v is sampled from the uniform distribution on the sphere $||v||^2 = d$.
- (I) Uniform in a coordinate basis: v is sampled uniformly from $\left\{\sqrt{d}\boldsymbol{e}_1, \sqrt{d}\boldsymbol{e}_2, \dots, \sqrt{d}\boldsymbol{e}_d\right\}$, where $\{\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_d\}$ is the natural coordinate basis of \mathbb{R}^d .

Multipoint:

Previous ones+i.i.d..

Uniform without replacement from the coordinate basis (at most d + 1 point evaluation).

Uniformly sample orthonormal basis (uniform in Stiefel manifold).

1 A Quick Introduction to Statistical Inference

2 Gradient-free Optimization

3 Statistical Inference for Gradient-free Optimization

4 Contextual Bandit Optimization

5 Statistical Inference in Contextual Bandit Optimization

What would happen if we combine the KW estimators with Polyak-Juditsky averaging? What is the CLT for those estimators?

Recall CLT for usually SGD with averaging:

$$\sqrt{n} \left(\overline{\theta}_n - \theta^*\right) \Rightarrow \mathcal{N}\left(\mathbf{0}, H^{-1}SH^{-1}\right), \quad \text{as} \quad n \to \infty$$

Theorem (Xi Chen, Z-L, He Li, Yichen Zhang (2021))

The CLT for KW with averaging is

$$\sqrt{n} \left(\overline{\theta}_n - \theta^*\right) \Rightarrow \mathcal{N}\left(\mathbf{0}, H^{-1}QH^{-1}\right), \quad \text{as} \quad n \to \infty,$$

where $Q = \mathbb{E}\left[vv^{\top}Svv^{\top}\right]$.

- (G) Gaussian: $Q^{(G)} = (2S + tr(S)I_d)$.
- (S) Spherical: $Q^{(S)} = \frac{d}{d+2} (2S + tr(S)I_d).$
- (1) Uniform in a natural coordinate basis: $Q^{(1)} = d \operatorname{diag}(S)$.

▲□ ▶ ▲ 三 ▶ ▲

The CLT

Easy observations: Gaussian is worse than spherical.

Other methods are generally incomparable. We cannot say for sure $Q^{(S)} \succeq Q^{(I)}$ or $Q^{(S)} \preceq Q^{(I)}$.

Figure: Comparison of Q matrices under different direction distributions

April, 2023

25 / 50

Zehua Lai (U of Chicago, CAM)

Dimension factor appears.

Example: S = I. Spherical $Q^{(S)} = dI = dS$. Uniform in a natural coordinate basis: $Q^{(I)} = dI = dS$.

Zeroth order estimator is worse than the optimal first order estimator by a factor of d.

This difference is not superfluous. The two point function evaluation gives us only partial $(\frac{1}{d})$ information of the gradient. We should not expect it behaves as good as the full gradient.

In fact, for any algorithm with two function evaluations, the convergence rate of $\|\hat{\theta}_n - \theta^*\|^2$ has a lower bound³ $\Omega(\frac{d}{n})$. So the estimator is optimal asymptotically up to a constant factor.

³Duchi, John, et al. IEEE Transactions on Information Theory (2015).

The rough bound indicates that there is a significant difference between zeroth order and first order optimization.

If we just want to make the variance in one direction e as small as possible. We can simply choose v to be in the direction e with high probability and in other direction with low probability. The variance in the direction e can be arbitrarily near the Cramer-Rao lower bound. But it will make the variance in other direction arbitrarily large and make the non-asymptotic convergence arbitrarily slow. We can derived the CLT m + 1-point estimator. Again, the final form matches the rough lower bound derived by Duchi et al.

For the final two estimator (uniform without replacement/uniform in Stiefel manifold), d + 1 point estimator achieves the exact lower bound of Cramer-Rao.

We can now implement one of the most important application of CLT: statistical inference.

More specifically, if there is a consistent estimator of $H^{-1}QH^{-1}$, then we can use the normal distribution to construct, for example, a 95% confidence inteval for θ^* .

How to estimate $H^{-1}QH^{-1}$? We can use same estimators as in SGD. There are many ways to do this:

One way is bootstraping⁴. We can simply use the trajectory of $\overline{\theta}_n$ to construct the covariance matrix of θ^* .

We can even prove a functional CLT: the trajectory converges to a Brownian motion. Thus, we can construct a "fixed-b" estimator based on the Brownian motion⁵.

The "plug-in" method is to estimate H, Q separately.

Zehua Lai (U of Chicago, CAM)

⁵Zhu et al., JASA (2021).

⁵Lee et al., arXiv preprint (2021).

How to estimate H, the Hessian? Again, take a spacing parameter h, two random directions u, v, and then calculate the second-order difference.

$$\hat{H} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{h_i^2} \Delta_{h_i, u_i} \Delta_{h_i, v_i} f(\theta_i; \zeta_i) u_i v_i^{\top}.$$

How to estimate Q, the variance of our gradient estimator? This is easier, we can simply calculate the empirical covariance.

$$\hat{Q} = \frac{1}{n} \sum_{i=1}^{n} \widehat{g}_{h_i, v_i}(\theta_i; \zeta_i) \widehat{g}_{h_i, v_i}(\theta_i; \zeta_i)^{\top}.$$

Theorem

Plug-in estimators are consistent. Furthermore, we have

$$\mathbb{E}\left\|\widehat{H}_{n}^{-1}\widehat{Q}_{n}\widehat{H}_{n}^{-1}-H^{-1}QH^{-1}\right\|\leq Cn^{-\alpha/2}.$$

Zehua Lai (U of Chicago, CAM)

< ≥ > <

Numerical experiments for linear and logistic regression:

100,000 samples. d = 20. Population design matrix $\Sigma = I$. Project to random direction to construct the 95% confidence inteval.

Online Statistical Inference

Figure: Convergence of the parameter estimation error $\|\overline{\theta}_n - \theta^*\|$ and coverage rates v.s. the sample size *n*. Plots show the cases of linear regression. Dashed lines in plots (b) correspond to the nominal 95% coverage.

1 A Quick Introduction to Statistical Inference

2 Gradient-free Optimization

3 Statistical Inference for Gradient-free Optimization

4 Contextual Bandit Optimization

5 Statistical Inference in Contextual Bandit Optimization

What is contextual bandit optimization?

The observed data at each decision point t is a triplet $\zeta_t = (X_t; A_t; Y_t(A_t))$, consisting of covariate X_t , action A_t , and reward $Y_t(A_t)$. We assume the contextual bandit environment is stochastic, in which $\{X_t, Y_t(a)\}$ is i.i.d. Here $Y_t(a)$ corresponds to the reward Y_t given a fixed action a regardless of the realized action A_t . $Y_t(a)$ is observed for $a = A_t$ only, but not observed for any other a.

Now let us add some SGD flavor.

The model is parametrized by some parameter θ and loss function $I(\theta, \zeta)$.

$$\theta^{*} \in \operatorname*{argmin}_{\theta \in \mathbb{R}^{d}} \mathbb{E}_{\mathbb{P}_{Y|X}} \left[\ell\left(\theta; \zeta\right) \mid X, A = a \right].$$

The SGD update with weight scheme:

$$\theta_t = \theta_{t-1} - \eta_t w_t \nabla \ell(\theta_{t-1}; \zeta_t).$$

Actions A_t are selected according to some policy $A_t \sim \pi_t(\theta_{t-1}; X_t)$, which defines action distribution. Weights are also computed using previous iterates $w_t(\theta_{t-1}; A_t, X_t)$.

Examples of policies:

Softmax: $\pi_t = softmax(Cs(\theta_{t-1}; X_t, A_t))$. s is some score function.

$$\epsilon\text{-greedy: } \mathbb{P}(A_t = a) = (1 - \epsilon) \mathbb{1}_{a \in \operatorname{argmax}\{s(\theta_{t-1}; X_t, a, Y_t))\}} + \epsilon / |A|.$$

Examples of weights:

Constant: $\boldsymbol{w}_t = \boldsymbol{w}$.

Inverse probability weighting: $\boldsymbol{w}_t = 1/\mathbb{P}(A_t|X_t, \theta_{t-1}).$

→ ∃ → 4

A more concrete example - contextual least square linear regression: $s = \mathbb{E}[Y_t \mid A_t, X_t] = X_t^\top \theta_{A_t}^* = (1 - A_t) (X_t^\top \theta_{[1:p]}^*) + A_t (X_t^\top \theta_{[p+1:2p]}^*),$ $\ell(\theta; \zeta_t) = \frac{1}{2} (1 - A_t) (Y_t - X_t^\top \theta_{[1:p]})^2 + \frac{1}{2} A_t (Y_t - X_t^\top \theta_{[p+1:2p]})^2.$ 1 A Quick Introduction to Statistical Inference

- 2 Gradient-free Optimization
- 3 Statistical Inference for Gradient-free Optimization
- 4 Contextual Bandit Optimization
- 5 Statistical Inference in Contextual Bandit Optimization

What is difficulty of CLT in contextual bandit?

$$\theta_t = \theta_{t-1} - \eta_t w_t \nabla \ell(\theta_{t-1}; \zeta_t).$$

 $w_t \nabla \ell(\theta_{t-1}; \zeta_t)$ is not the gradient of a loss function, we cannot apply previous result directly. Instead, we need to define the function:

$$L_{\theta'}(\theta) = \mathbb{E}_{\mathbb{P}}\left[\mathbb{E}_{\pi(X,\theta')}\left(w(\theta';X,A)\ell(\theta;X,A,Y) \mid X\right)\right].$$

We must treat θ', θ as two separate variables and denote the partial derivative as

$$abla L_{ heta'}(heta):=rac{\partial}{\partial heta}L_{ heta'}(heta),
abla^2 L_{ heta'}(heta):=rac{\partial^2}{\partial heta^2}L_{ heta'}(heta).$$

|| 白戸 || (三) (三

Now we can define the two matrix $H = \nabla^2 L_{\theta^*}(\theta^*)$ and S to be the covariance matrix of $w(\theta^*; X, A) \nabla I(\theta^*; X, A, Y)$.

Theorem (Xi Chen, Z-L, He Li, Yichen Zhang (2022))

We have the CLT

$$\sqrt{t}(\bar{\theta}_t - \theta^*) \rightarrow \mathcal{N}(0, H^{-1}SH^{-1}).$$

Furthermore, we can define consistent plug-in estimators of H, S and construct confidence intervals using CLT.

Further consideration: How to choose π and w to achieve a small asymptotic covariance matrices?

Corollary (Xi Chen, Z-L, He Li, Yichen Zhang (2022))

For contextual least square linear regression with any fixed π , $w_t = w$ achieves the smallest covariace matrices.

At least in this simple setting, there is no need to do any weighting scheme.

Same. Just plug-in.

Zehua Lai (U of Chicago, CAM)

- CLTs in various machine learning settings are largely unexplored and a detailed analysis can often provide us new insights.
- Minimax bounds are much harder and much more interesting. Can we generalize the Hájek-Le Cam local asymptotic minimax theorem beyond the standard SGD setting?

Thank you

メロト メロト メヨトメ