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A Quick Introduction to Statistical Inference

If we have n samples of a random variable X , can we estimate the
expectation of X?

Answer: X̄n := 1
n

∑
Xi .
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A Quick Introduction to Statistical Inference

Online updates: X̄n+1 = 1
n+1

∑
Xi = 1

n+1Xn+1 + n
n+1 X̄n.

Theorem

X̄n is unbiased, consistent.

Theorem (Central Limit Theorem, CLT)
√
n(X̄n − EX )⇒ N(0,V ), where V = E(X − EX )(X − EX )>.

How to estimate V ?
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A Quick Introduction to Statistical Inference

Answer: Vn = 1
n

∑
(Xi − X̄n)(Xi − X̄n)>.

Exercise: try to write down formulas for update it online (iteratively).

Theorem

Vn is biased, consistent.

Now given a direction u, consider u>
√
n(X̄n − EX ). It converges to

N(0, u>Vu). So the probability that u>
√
n(X̄n − EX ) is in the interval

[−2
√
u>Vu, 2

√
u>Vu] is around 95%.

Pr{
√
nu>EX ∈ [

√
nu>X̄n − 2

√
u>Vnu,

√
nu>X̄n + 2

√
u>Vnu]} ≈ 95%.

Zehua Lai (U of Chicago, CAM) April, 2023 6 / 50



A Quick Introduction to Statistical Inference

Consider the following minimization problem,

minimize L(θ) := Eζ∼P [`(θ; ζ)] .

We are able to query the sample gradient ∇`(θ; ζ), not the full gradient
∇L(θ).

What is the most efficient way to minimize?

Answer: Stochastic gradient descent with Polyak-Juditsky averaging.
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A Quick Introduction to Statistical Inference

Start from an arbitrary point θ0. At each step, we compute:

θn = θn−1 − ηn∇`(θn−1; ζn),

where the step size ηn = η0n
−α, 12 < α < 1.

We can then define the final Polyak-Juditsky averaging estimator as

θn =
1

n

n∑
i=1

θi .
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A Quick Introduction to Statistical Inference

Theorem (Polyak-Juditsky1)

Assume the function L(θ) is strongly convex with global minimizer θ∗.
Assume covariance of the sample gradient has enough regularity. Define
H, S by

H := ∇2L(θ∗), S := E
[
∇`(θ∗; ζ)∇`(θ∗; ζ)>

]
.

Then we have a central limit theorem

√
n
(
θn − θ∗

)
⇒ N

(
0,H−1SH−1

)
, as n→∞.

The choice of η0, α does not affect the result.

1Polyak and Juditsky, SIAM journal on control and optimization (1992).
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A Quick Introduction to Statistical Inference

Consider the case of least square linear regression: l(θ) = (y − θ>X )2.
y = θ>∗ X + ζ.
Now the gradient step is:

θn = θn−1 − ηn(XX>(θn−1 − θ∗) + X ζn).

Make the harmless assumption θ∗ = 0. This becomes:

θn = θn−1 − ηn(Aθn−1 + ξn(θn−1)),

where A = E[XX>], ξn(θ) = (XX> − A)θ + X ζn.
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A Quick Introduction to Statistical Inference

After some clever algebraic manipulation, we can even prove that

√
nθ̄n =

√
nH−1ξ̄n(0) + residual terms . . .

The residual terms go to 0.
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A Quick Introduction to Statistical Inference

Hájek-Le Cam local asymptotic minimax theorem: SGD with
Polyak-Juditsky averaging achieves optimal rates asymptotically.

This rate is also called the Cramer-Rao lower bound.

Two variant: gradient-free optimization and contextual bandit
optimization.
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Gradient-free Optimization

What is Gradient-free Optimization/Zeroth Order Optimization?

Again, we still want to solve the problem

minimize L(θ) := EP [`(θ; ζ)] .

However, we now only have the access to the sample function value
`(θ; ζ), not the sample gradient ∇`(θ; ζ).
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Gradient-free Optimization

Let us consider several different cases:

(i) At each step, we can evaluate the function once and get `(θ; ζn).

(ii) At each step, we can evaluate the function twice and get
`(θ1; ζn), `(θ2; ζn).

(iii) For each step, we can evaluate the function m times and get
`(θ1; ζn), . . . , `(θm; ζn).
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Gradient-free Optimization

(i) In this case, CLT rate is impossible. 2

(ii) (iii) Those two cases are similar. They will be our main focus.

2Flaxman et al., SODA (2005). Agarwal et al., NeuIPS (2011).
Zehua Lai (U of Chicago, CAM) April, 2023 16 / 50



Gradient-free Optimization

The simplest idea to solve (ii) (iii) is the Kiefer-Wolfowitz (KW) algorithm
(finite difference).

We can use finite difference to approximate the gradient.

Given a direction v , a spacing parameter h, our two-point estimator of
gradient is

ĝh,v (θ; ζ) =
1

h
∆h,v `(θ; ζ)v :=

`(θ + hv ; ζ)− `(θ; ζ)

h
v .

This is almost the same thing as vv>∇`(θ; ζ).
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Gradient-free Optimization

Given m direction v1, . . . , vm, a spacing parameter h, our m + 1-point
estimator of gradient is

ĝh,v (θ; ζ) =
m∑
i=1

1

h
∆h,vi `(θ; ζ)vi .
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Gradient-free Optimization

This finite difference idea does not work if we can only evaluate once per
iteration.

We need to specify two hyperparameters: the spacing parameter h and the
distribution of the finite difference direction v .

Choosing h is easy. We can use hn = h0n
−γ , 12 < γ < 1.

Choosing v is tricky. Obvious requirement: Ev = 0,Evv> = Id .
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Gradient-free Optimization

(G) Gaussian: v ∼ N (0, I ).

(S) Spherical: v is sampled from the uniform distribution on the sphere
‖v‖2 = d .

(I) Uniform in a coordinate basis: v is sampled uniformly from{√
de1,

√
de2, . . . ,

√
ded

}
, where {e1, e2, . . . , ed} is the natural

coordinate basis of Rd .
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Gradient-free Optimization

Multipoint:

Previous ones+i.i.d..

Uniform without replacement from the coordinate basis (at most d + 1
point evaluation).

Uniformly sample orthonormal basis (uniform in Stiefel manifold).
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The CLT

What would happen if we combine the KW estimators with
Polyak-Juditsky averaging? What is the CLT for those estimators?

Recall CLT for usually SGD with averaging:

√
n
(
θn − θ∗

)
⇒ N

(
0,H−1SH−1

)
, as n→∞.

Theorem (Xi Chen, Z-L, He Li, Yichen Zhang (2021))

The CLT for KW with averaging is

√
n
(
θn − θ∗

)
⇒ N

(
0,H−1QH−1

)
, as n→∞,

where Q = E
[
vv>Svv>

]
.
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The CLT

(G) Gaussian: Q(G) = (2S + tr(S)Id).

(S) Spherical: Q(S) = d
d+2 (2S + tr(S)Id).

(I) Uniform in a natural coordinate basis: Q(I) = d diag(S).
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The CLT

Easy observations: Gaussian is worse than spherical.

Other methods are generally incomparable. We cannot say for sure
Q(S) � Q(I) or Q(S) � Q(I).

Figure: Comparison of Q matrices under different direction distributions
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The CLT

Dimension factor appears.

Example: S = I . Spherical Q(S) = dI = dS . Uniform in a natural
coordinate basis: Q(I) = dI = dS .

Zeroth order estimator is worse than the optimal first order estimator by a
factor of d .
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The CLT

This difference is not superfluous. The two point function evaluation gives
us only partial ( 1

d ) information of the gradient. We should not expect it
behaves as good as the full gradient.

In fact, for any algorithm with two function evaluations, the convergence
rate of ‖θ̂n − θ∗‖2 has a lower bound3Ω(dn ). So the estimator is optimal
asymptotically up to a constant factor.

3Duchi, John, et al. IEEE Transactions on Information Theory (2015).
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The CLT

The rough bound indicates that there is a significant difference between
zeroth order and first order optimization.

If we just want to make the variance in one direction e as small as
possible. We can simply choose v to be in the direction e with high
probability and in other direction with low probability. The variance in the
direction e can be arbitrarily near the Cramer-Rao lower bound. But it will
make the variance in other direction arbitrarily large and make the
non-asymptotic convergence arbitrarily slow.
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The CLT

We can derived the CLT m + 1-point estimator. Again, the final form
matches the rough lower bound derived by Duchi et al.

For the final two estimator (uniform without replacement/uniform in
Stiefel manifold), d + 1 point estimator achieves the exact lower bound of
Cramer-Rao.
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Online Statistical Inference

We can now implement one of the most important application of CLT:
statistical inference.

More specifically, if there is a consistent estimator of H−1QH−1, then we
can use the normal distribution to construct, for example, a 95%
confidence inteval for θ∗.
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Online Statistical Inference

How to estimate H−1QH−1? We can use same estimators as in SGD.
There are many ways to do this:

One way is bootstraping4. We can simply use the trajectory of θn to
construct the covariance matrix of θ∗.

We can even prove a functional CLT: the trajectory converges to a
Brownian motion. Thus, we can construct a ”fixed-b” estimator based on
the Brownian motion5.

The ”plug-in” method is to estimate H,Q separately.

5Zhu et al., JASA (2021).
5Lee et al., arXiv preprint (2021).
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Online Statistical Inference

How to estimate H, the Hessian? Again, take a spacing parameter h, two
random directions u, v , and then calculate the second-order difference.

Ĥ =
1

n

n∑
i=1

1

h2i
∆hi ,ui ∆hi ,vi f (θi ; ζi )uiv

>
i .
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Online Statistical Inference

How to estimate Q, the variance of our gradient estimator? This is easier,
we can simply calculate the empirical covariance.

Q̂ =
1

n

n∑
i=1

ĝhi ,vi (θi ; ζi )ĝhi ,vi (θi ; ζi )
>.
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Online Statistical Inference

Theorem

Plug-in estimators are consistent. Furthermore, we have

E
∥∥∥Ĥ−1n Q̂nĤ

−1
n − H−1QH−1

∥∥∥ ≤ Cn−α/2.
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Online Statistical Inference

Numerical experiments for linear and logistic regression:

100,000 samples. d = 20. Population design matrix Σ = I . Project to
random direction to construct the 95% confidence inteval.
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Online Statistical Inference

(a) (b)

Figure: Convergence of the parameter estimation error ‖θn − θ?‖ and coverage
rates v.s. the sample size n. Plots show the cases of linear regression. Dashed
lines in plots (b) correspond to the nominal 95% coverage.
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Contextual Bandit Optimization

What is contextual bandit optimization?

The observed data at each decision point t is a triplet
ζt = (Xt ;At ;Yt(At)), consisting of covariate Xt , action At , and reward
Yt(At). We assume the contextual bandit environment is stochastic, in
which {Xt ,Yt(a)} is i.i.d. Here Yt(a) corresponds to the reward Yt given
a fixed action a regardless of the realized action At . Yt(a) is observed for
a = At only, but not observed for any other a.
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Contextual Bandit Optimization

Now let us add some SGD flavor.

The model is parametrized by some parameter θ and loss function l(θ, ζ).

θ∗ ∈ argmin
θ∈Rd

EPY |X [` (θ; ζ) | X ,A = a] .
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Contextual Bandit Optimization

The SGD update with weight scheme:

θt = θt−1 − ηtwt∇`(θt−1; ζt).

Actions At are selected according to some policy At ∼ πt(θt−1;Xt), which
defines action distribution. Weights are also computed using previous
iterates wt(θt−1;At ,Xt).
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Contextual Bandit Optimization

Examples of policies:

Softmax: πt = softmax(Cs(θt−1;Xt ,At)). s is some score function.

ε-greedy: P(At = a) = (1− ε)1a∈argmax{s(θt−1;Xt ,a,Yt))} + ε/|A|.
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Contextual Bandit Optimization

Examples of weights:

Constant: w t = w .

Inverse probability weighting: w t = 1/P(At |Xt , θt−1).
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Contextual Bandit Optimization

A more concrete example - contextual least square linear regression:

s = E[Yt | At ,Xt ] = X>t θ
∗
At

= (1− At)
(
X>t θ

∗
[1:p]

)
+ At

(
X>t θ

∗
[p+1:2p]

)
,

`(θ; ζt) = 1
2(1− At)

(
Yt − X>t θ[1:p]

)2
+ 1

2At

(
Yt − X>t θ[p+1:2p]

)2
.
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CLT

What is difficulty of CLT in contextual bandit?

θt = θt−1 − ηtwt∇`(θt−1; ζt).

wt∇`(θt−1; ζt) is not the gradient of a loss function, we cannot apply
previous result directly. Instead, we need to define the function:

Lθ′(θ) = EP
[
Eπ(X ,θ′)

(
w(θ′;X ,A)`(θ;X ,A,Y ) | X

)]
.

We must treat θ′, θ as two separate variables and denote the partial
derivative as

∇Lθ′(θ) :=
∂

∂θ
Lθ′(θ),∇2Lθ′(θ) :=

∂2

∂θ2
Lθ′(θ).
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CLT

Now we can define the two matrix H = ∇2Lθ∗(θ
∗) and S to be the

covariance matrix of w(θ∗;X ,A)∇l(θ∗;X ,A,Y ).

Theorem (Xi Chen, Z-L, He Li, Yichen Zhang (2022))

We have the CLT

√
t(θ̄t − θ∗)→ N (0,H−1SH−1).

Furthermore, we can define consistent plug-in estimators of H,S and
construct confidence intervals using CLT.
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CLT

Further consideration: How to choose π and w to achieve a small
asymptotic covariance matrices?

Corollary (Xi Chen, Z-L, He Li, Yichen Zhang (2022))

For contextual least square linear regression with any fixed π, wt = w
achieves the smallest covariace matrices.

At least in this simple setting, there is no need to do any weighting
scheme.
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Statistical inference

Same. Just plug-in.
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Summary

CLTs in various machine learning settings are largely unexplored and a
detailed analysis can often provide us new insights.

Minimax bounds are much harder and much more interesting. Can we
generalize the Hájek-Le Cam local asymptotic minimax theorem
beyond the standard SGD setting?
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Thank you
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